256
Views
3
CrossRef citations to date
0
Altmetric
Articles

Stable isotopes reveal groundwater to river connectivity in a mesoscale subtropical watershed

, ORCID Icon, , , &
Pages 236-253 | Received 19 Jun 2020, Accepted 01 Dec 2020, Published online: 29 Jan 2021

References

  • Vörösmarty CJ, Green P, Salisbury J, et al. Global water resources: vulnerability from climate change and population growth. Science. 2000;289:284–288.
  • Huang J, Yu H, Guan X, et al. Accelerated dryland expansion under climate change. Nat Clim Change. 2016;6:166–171.
  • UN. The Millennium Development Goals Report. New York: United Nations; 2015.
  • Gosling SN, Arnell NW. A global assessment of the impact of climate change on water scarcity. Clim Change. 2016;134:371–385.
  • Mekonnen MM, Hoekstra AY. Four billion people facing severe water scarcity. Sci Adv. 2016;2:e1500323.
  • Sousa PM, Blamey RC, Reason CJC, et al. The ‘Day Zero’ Cape Town drought and the poleward migration of moisture corridors. Environ Res Lett. 2018;13:124025.
  • Nobre CA, Marengo JA, Seluchi ME, et al. Some characteristics and impacts of the drought and water crisis in southeastern Brazil during 2014 and 2015. J Water Resour Prot. 2016;8:252–262.
  • Cunha APMA, Zeri M, Leal KD, et al. Extreme drought events over Brazil from 2011 to 2019. Atmosphere (Basel). 2019;10:642.
  • Sophocleous M. Interactions between groundwater and surface water: the state of the science. Hydrogeol J. 2002;10:52–67.
  • Dams J, Salvadore E, Van Daele T, et al. Spatio-temporal impact of climate change on the groundwater system. Hydrol Earth Syst Sci. 2012;16:1517–1531.
  • Sánchez-Murillo R, Brooks ES, Elliot WJ, et al. Baseflow recession analysis in the inland Pacific northwest of the United States. Hydrogeol J. 2015;23:287–303.
  • Alley WM. Drought-proofing groundwater. Groundwater. 2016;54:309–309.
  • Ross A. Speeding the transition towards integrated groundwater and surface water management in Australia. J Hydrol. 2018;567:e1–e10.
  • Eckhardt K. How to construct recursive digital filters for baseflow separation. Hydrol Process. 2005;19:507–515.
  • Zhang J, Zhang Y, Song J, et al. Evaluating relative merits of four baseflow separation methods in eastern Australia. J Hydrol. 2017;549:252–263.
  • Tallaksen LM. A review of baseflow recession analysis. J Hydrol. 1995;165:349–370.
  • Biswal B, Kumar DN. Study of dynamic behaviour of recession curves. Hydrol Process. 2014;28:784–792.
  • Stewart MK. Promising new baseflow separation and recession analysis methods applied to streamflow at Glendhu Catchment. New Zealand. Hydrol Earth Syst Sci. 2015;19:2587–2603.
  • Tetzlaff D, Buttle J, Carey SK, et al. Tracer-based assessment of flow paths, storage and runoff generation in northern catchments: a review. Hydrol Process. 2015;29:3475–3490.
  • Lott DA, Stewart MT. Base flow separation: a comparison of analytical and mass balance methods. J Hydrol. 2016;535:525–533.
  • Kendall C, McDonnell JJ. Isotope tracers in catchment hydrology. Amsterdam: Elsevier; 1999.
  • Kendall C, Coplen TB. Distribution of oxygen-18 and deuteriun in river waters across the United States. Hydrol Process. 2001;15:1363–1393.
  • Vitvar T, Aggarwal PK, Mcdonnell JJ. A review of isotope applications in catchment hydrology. In: Aggarwal PK, Gat JR, Froehlich KFO, editors. Isotopes in the water cycle: present and future of a developing science. Berlin/Heidelberg: Springer; 2005. p. 151–169.
  • A das bacias PCJ. . Relatório da situação dos recursos hídricos 2018: UGRHI 5 bacias hidrográficas dos rios Piracicaba, Capivari e Jundiaí. Piracicaba: Fundação Agência das Bacias Hidrográficas dos Rios Piracicaba, Capivari e Jundiaí; 2018; Portuguese.
  • Ezaki S, Gastmans D, Iritani MA, et al. Geochemical evolution, residence times and recharge conditions of the multilayered Tubarão aquifer system (State of São Paulo – Brazil) as indicated by hydrochemical, stable isotope and 14C data. Isot Environ Health Stud. 2020;56:495–512.
  • Rossi M. Mapa Pedológico do Estado de São Paulo: revisado e ampliado. São Paulo: Instituto Florestal; 2017; Portuguese.
  • Zaine JE [UNESP]. Mapeamento geológico–geotécnico por meio do método do detalhamento progressivo: ensaio de aplicação na área urbana do município de Rio Claro (SP). Aleph. 2000. Portuguese.
  • DAEE, IPT, CPRM. Mapa de águas subterrâneas do Estado de São Paulo escala 1:1.000.000: nota explicativa. São Paulo; 2005. Portuguese.
  • Peel MC, Finlayson BL, McMahon TA. Updated world map of the Köppen–Geiger climate classification. Hydrol Earth Syst Sci. 2007;11:1633–1644.
  • dos Santos V, Gastmans D, Santarosa LV, et al. Variabilidade da Composição isotópica da precipitação na região central do estado de São Paulo. Águas Subterrâneas. 2019;33:171–181. Portuguese.
  • Brutsaert W, Nieber JL. Regionalized drought flow hydrographs from a mature glaciated plateau. Water Resour Res. 1977;13:637–643.
  • Collischonn W, Fan FM. Defining parameters for Eckhardt’s digital baseflow filter. Hydrol Process. 2013;27:2614–2622.
  • Dansgaard W. Stable isotopes in precipitation. Tellus. 1964;16:436–468.
  • Santos V D, Gastmans D, Sánchez-Murillo R, et al. Regional atmospheric dynamics govern interannual and seasonal stable isotope composition in southeastern Brazil. J Hydrol. 2019;579:124136.
  • Ma Y, Song X. Using stable isotopes to determine seasonal variations in water uptake of summer maize under different fertilization treatments. Sci Total Environ. 2016;550:471–483.
  • Gokool S, Riddell ES, Swemmer A, et al. Estimating groundwater contribution to transpiration using satellite-derived evapotranspiration estimates coupled with stable isotope analysis. J Arid Environ. 2018;152:45–54.
  • Parnell AC. Package ‘simmr.’; 2019.
  • Parnell AC, Phillips DL, Bearhop S, et al. Bayesian stable isotope mixing models. Environmetrics. 2013;24:387–399.
  • Evaristo J, McDonnell JJ. Prevalence and magnitude of groundwater use by vegetation: A global stable isotope meta-analysis. Sci Rep. 2017;7:44110.
  • Rothfuss Y, Javaux M. Reviews and syntheses: isotopic approaches to quantify root water uptake: A review and comparison of methods. Biogeosciences. 2017;14:2199–2224.
  • Zhang ZQ, Evaristo J, Li Z, et al. Tritium analysis shows apple trees may be transpiring water several decades old. Hydrol Process. 2017;31:1196–1201.
  • Brum M, Vadeboncoeur MA, Ivanov V, et al. Hydrological niche segregation defines forest structure and drought tolerance strategies in a seasonal Amazon forest. J Ecol. 2019;107:318–333.
  • Rodell M, Houser PR, Jambor U, et al. The Global Land Data assimilation system. Bull Am Meteorol Soc. 2004;85:381–394.
  • Gebremichael M, Hossain F. Satellite rainfall applications for surface hydrology. Dordrecht: Springer; 2010.
  • Smakhtin VU. Low flow hydrology: a review. J Hydrol. 2001;240:147–186.
  • Santhi C, Allen PM, Muttiah RS, et al. Regional estimation of base flow for the conterminous United States by hydrologic landscape regions. J Hydrol. 2008;351:139–153.
  • Bloomfield JP, Allen DJ, Griffiths KJ. Examining geological controls on baseflow index (BFI) using regression analysis: an illustration from the Thames basin, UK. J Hydrol. 2009;373:164–176.
  • Klaus J, McDonnell JJJ. Hydrograph separation using stable isotopes: review and evaluation. J Hydrol. 2013;505:47–64.
  • Jasechko S, Kirchner JW, Welker JM, et al. Substantial proportion of global streamflow less than three months old. Nat Geosci. 2016;9:126–129.
  • Carlier C, Wirth SB, Cochand F, et al. Geology controls streamflow dynamics. J Hydrol. 2018;566:756–769.
  • Clark ID, Fritz P. Environmental isotopes in hydrogeology. Boca Raton (FL): Lewis Publishers; 1997.
  • Jasechko S, Taylor RG. Intensive rainfall recharges tropical groundwaters. Environ Res Lett. 2015;10:124015.
  • Carnier Neto D, Kiang CH. Aplicação do método de flutuação de nível d´água para a estimativa de recarga: exemplo do aquífero Rio Claro. Águas Subterrâneas. 2008;22:39–48. Portuguese.
  • Nogueira GEH, Kiang CH. Simulação numérica de fluxo de águas subterrâneas do aquífero rio claro, porção nordeste do município de Rio Claro. SP. Águas Subterrâneas. 2015;29:175–190. Portuguese.
  • Batista LV, Gastmans D, Sánchez-Murillo R, et al. Groundwater and surface water connectivity within the recharge area of Guarani aquifer system during El Niño 2014–2016. Hydrol Process. 2018;32:2483–2495.
  • Lapworth DJ, MacDonald AM, Krishan G, et al. Groundwater recharge and age-depth profiles of intensively exploited groundwater resources in northwest India. Geophys Res Lett. 2015;42:7554–7562.
  • Kendall C, Doctor DH. Stable isotope applications in hydrologic studies. In: Drever JI, editor. Treatise on Geochemistry, Vol. 5. Amsterdam: Elsevier; 2003. p. 319–364.
  • Gibson JJ, Price JS, Aravena R, et al. Runoff generation in a hypermaritime bog-forest upland. Hydrol Process. 2000;14:2711–2730.
  • Liu Y, Yamanaka T. Tracing groundwater recharge sources in a mountain–plain transitional area using stable isotopes and hydrochemistry. J Hydrol. 2012;464–465:116–126.
  • Reckerth A, Stichler W, Schmidt A, et al. Long-term data set analysis of stable isotopic composition in German rivers. J Hydrol. 2017;552:718–731.
  • Rank D, Papesch W, Heiss G, et al. Environmental isotope ratios of river water in the Danube basin. In: Monitoring isotopes in rivers: creation of the Global Network of Isotopes in Rivers (GNIR). Results of a Coordinated Research Project 2002–2006. Vienna: International Atomic Energy Agency; 2012. p. 13–31. (IAEA-TECDOC–1673).
  • Rank D, Wyhlidal S, Schott K, et al. A 50 years’ isotope record of the Danube river water and its relevance for hydrological, climatological and environmental research. Acta Zool Bulg. 2014;66:109–115.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.