97
Views
0
CrossRef citations to date
0
Altmetric
Health & Medicine

Measurement of plasma protein and whole body protein metabolism using [15N]glycine in a young adult man – a pilot study

ORCID Icon, &
Pages 511-528 | Received 01 Jul 2023, Accepted 24 Jul 2023, Published online: 19 Sep 2023

References

  • Levitt DG, Levitt MD. Human serum albumin homeostasis: a new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum albumin measurements. Int J Gen Med. 2016;9:229–255. doi:10.2147/IJGM.S102819
  • Tytgat GN, Collen D, Verstraete M. Metabolism of fibrinogen in cirrhosis of the liver. J Clin Invest. 1971;50:1690–1701. doi:10.1172/JCI106658
  • Anderson L. Candidate-based proteomics in the search for biomarkers of cardiovascular disease. J Physiol. 2005;563:23–60. doi:10.1113/jphysiol.2004.080473
  • Fitian AI, Nelson DR, Liu C, et al. Integrated metabolomic profiling of hepatocellular carcinoma in hepatitis C cirrhosis through GC/MS and UPLC/MS-MS. Liver Int. 2014;34:1428–1444. doi:10.1111/liv.12541
  • Yudkoff M, Nissim I, McNellis W, et al. Albumin synthesis in premature infants: determination of turnover with [15N]glycine. Pediatr Res. 1987;21:49–53. doi:10.1203/00006450-198701000-00012
  • Fu A, Nair KS. Age effect on fibrinogen and albumin synthesis in humans. Am J Physiol. 1998;275:E1023–E1030.
  • Schomerus H, Mayer G. Synthesis rates of albumin and fibrinogen in patients with protein-losing enteropathy and in a patient recovering from protein malnutrition. Digestion. 1975;13:201–208. doi:10.1159/000197709
  • Gersovitz M, Munro HN, Udall J, et al. Albumin synthesis in young and elderly subjects using a new stable isotope methodology: response to level of protein intake. Metab Clin Exp 1980;29:1075–1086. doi:10.1016/0026-0495(80)90219-X
  • Jahoor F, Sivakumar B, Del Rosario M, et al. Isolation of acute-phase proteins from plasma for determination of fractional synthesis rates by a stable isotope tracer technique. Anal Biochem. 1996;236:95–100. doi:10.1006/abio.1996.0136
  • Krishnan L, Krishnan EC, Jewell WR. Theoretical treatment of the distribution and degradation of vascular, interstitial and intracellular albumin. J Theor Biol. 1977;67:609–623. doi:10.1016/0022-5193(77)90249-1
  • Carraro F, Hartl WH, Stuart CA, et al. Whole body and plasma protein synthesis in exercise and recovery in human subjects. Am J Physiol. 1990;258:E821–E831.
  • McFarlane AS. Measurement of synthesis rates of liver-produced plasma proteins. Biochem J. 1963;89:277–290. doi:10.1042/bj0890277
  • Reeve EB, McKinley JE. Measurement of albumin synthetic rate with bicarbonate-14C. Am J Physiol. 1970;218:498–509. doi:10.1152/ajplegacy.1970.218.2.498
  • Sterling K. The turnover rate of serum albumin in man as measured by I131-tagged albumin. J Clin Invest. 1951;30:1228–1237. doi:10.1172/JCI102542
  • Lewallen CG, Berman M, Rall JE. Studies of iodoalbumin metabolism. I. A mathematical approach to the kinetics. J Clin Invest. 1959;38:66–87. doi:10.1172/JCI103796
  • Ballmer PE, McNurlan MA, Milne E, et al. Measurement of albumin synthesis in humans: a new approach employing stable isotopes. Am J Physiol. 1990;259:E797–E803.
  • Ballmer PE, McNurlan MA, Essen P, et al. Albumin synthesis rates measured with [2H5ring]phenylalanine are not responsive to short-term intravenous nutrients in healthy humans. J Nutr. 1995;125:512–519.
  • Wilkinson P, Mendenhall CL. Serum albumin turnover in normal subjects and patients with cirrhosis measured by 131I-labelled human albumin. Clin Sci. 1963;25:281–292.
  • McNurlan MA, Garlick PJ. Contribution of rat liver and gastrointestinal tract to whole-body protein synthesis in the rat. Biochem J. 1980;186:381–383. doi:10.1042/bj1860381
  • Johnson HA, Baldwin RL, Klasing KC, et al. Impact of separating amino acids between plasma, extracellular and intracellular compartments on estimating protein synthesis in rodents. Amino Acids. 2001;20:389–400. doi:10.1007/s007260170035
  • Bennett MJ, Cryer DR, Yudkoff M, et al. Measurement of (C13)arginine incorporation into apolipoprotein B-100 in very low density lipoproteins and low density lipoproteins in normal subjects using (13C)sodium bicarbonate infusion and isotope ratio mass spectrometry. Biomed Environ Mass Spectrom. 1990;19:459–464. doi:10.1002/bms.1200190803
  • Gasier HG, Fluckey JD, Previs SF. The application of 2H2O to measure skeletal muscle protein synthesis. Nutr Metab (Lond). 2010;7:31. doi:10.1186/1743-7075-7-31
  • Olufemi OS, Humes P, Whittaker PG, et al. Albumin synthetic rate: a comparison of arginine and alpha-ketoisocaproate precursor methods using stable isotope techniques. Eur J Clin Nutr. 1990;44:351–361.
  • Cryer DR, Matsushima T, Marsh JB, et al. Direct measurement of apolipoprotein B synthesis in human very low density lipoprotein using stable isotopes and mass spectrometry. J Lipid Res. 1986;27:508–516. doi:10.1016/S0022-2275(20)35195-6
  • Bornhak H, Junghans P, Matkowitz R. Methodische Aspekte bei der Untersuchung des Plasmaproteinturnovers mit 15N [Methodical issues in studies of plasma protein turnover using 15N]. ZfI-Mitteilungen. 1983;77:121–128. German.
  • Peinado-Izaguerri J, Zarzuela E, McLaughlin M, et al. A novel dynamic proteomics approach for the measurement of broiler chicken protein fractional synthesis rate. Rapid Commun Mass Spectrom. 2023;37(10):e9497), doi:10.1002/rcm.9497
  • Zhao Y, Lee WN, Lim S, et al. Quantitative proteomics: measuring protein synthesis using 15N amino acid labeling in pancreatic cancer cells. Anal Chem. 2009;81:764–771. doi:10.1021/ac801905g
  • Jaleel A, Nehra V, Persson XM, et al. In vivo measurement of synthesis rate of multiple plasma proteins in humans. Am J Physiol. 2006;291:E190–E197.
  • Kim J, Seo S, Kim TY. Metabolic deuterium oxide (D2O) labeling in quantitative omics studies: a tutorial review. Anal Chim Acta. 2023;1242:340722), doi:10.1016/j.aca.2022.340722
  • Cobelli C, David Foster D, Toffolo G. Tracer kinetics in biomedical research. From data to model. New York (NY): Kluwer Academic Publishers; 2002.
  • Landaw EM, DiStefano JJ. Multiexponential, multicompartmental, and noncompartmental modeling. I. Methodological limitations and physiological interpretations. Am J Physiol. 1984;246:R651–R664.
  • Junghans P, Wagner B, Nickel A, et al. Möglichkeiten und Probleme der mathematischen Interpretation von tracerkinetischen Daten [Possibilities and problems of the mathematical interpretation of tracer kinetic data]. ZfI-Mitteilungen. 1983;77:98–115. German.
  • Junghans P, Wagner B, Nickel A, et al. Tracer kinetics and metabolic models in medicine. Isot Environ Health Stud. 2012;48:226–238. doi:10.1080/10256016.2012.677043
  • Ikewaki K, Rader DJ, Schaefer JR, et al. Evaluation of apoA-I kinetics in humans using simultaneous endogenous stable isotope and exogenous radiotracer methods. J Lipid Res. 1993;34:2207–2215. doi:10.1016/S0022-2275(20)35361-X
  • Zuz G. (1984). 15N-Traceruntersuchungen zum Markierungsverhalten von Plasmaproteinen und Bestimmung von Synthese- sowie Verteilungsraten mit [131I]-Humanserumalbumin [15N-tracer studies on the labelling of plasma proteins and the determination of their synthesis and exchange rates using 131I human serum albumin] [Doctoral thesis]. Rostock. German.
  • Perales G, L J. Blood volume analysis by radioisotopic dilution techniques: state of the art. Appl Radiat Isot. 2015;96:71–82. doi:10.1016/j.apradiso.2014.11.014
  • Faust H, Bornhak H, Hirschberg K, et al. Klinisch-chemische und isotopenanalytische Methoden zur Untersuchung des Stickstoffstoffwechsels mit 15N beim Menschen – Methodenkatalog. [Clinical-chemical and isotope analytical methods for the investigation of the nitrogen metabolism by means of 15N in human – Catalogue of methods]. ZfI-Mitteilungen. 1981;36:1–205. German.
  • Toffolo G, Foster DM, Cobelli C. Estimation of protein fractional synthetic rate from tracer data. Am J Physiol. 1993;264:E128–E135.
  • SAAM II, Version 2.3, Spokane WA, USA: nanomath. (2022). https://www.nanomath.us/saam2. Formerly: Charlottesville, VA, USA: The Epsilon Group (2016). tegvirginia.com.
  • Junghans P, Voigt J, Jentsch W, et al. A novel doubly labelled 13C,15N amino acid method for measuring energy and protein metabolism in man. Isot Environ Health Stud. 2019;55:588–606. doi:10.1080/10256016.2019.1681990
  • Waterlow JC, Garlick PJ, Millward DJ. Protein turnover in mammalian tissues and in the whole body. Amsterdam: Elsevier/North Holland Biomedical Press; 1978.
  • Cobelli C, Toffolo G, Bier DM, et al. Models to interpret kinetic data in stable isotope tracer studies. Am J Physiol. 1987;253:E551–E564.
  • Zilversmit DB. The design and analysis of isotope experiments. Am J Med. 1960;29:832–848. doi:10.1016/0002-9343(60)90117-0
  • Matthews DE, Conway JM, Young VR, et al. Glycine nitrogen metabolism in man. Metab Clin Exp 1981;30:886–893. doi:10.1016/0026-0495(81)90067-6
  • Chinkes DL, Rosenblatt J, Wolfe RR. Assessment of the mathematical issues involved in measuring the fractional synthesis rate of protein using the flooding dose technique. Clin Sci (Lond). 1993;84:177–183. doi:10.1042/cs0840177
  • Garlick PJ, McNurlan MA, Essén P, et al. Measurement of tissue protein synthesis rates in vivo: a critical analysis of contrasting methods. Am J Physiol. 1994;266:E287–E297.
  • Rennie MJ, Smith K, Watt PW. Measurement of human tissue protein synthesis: an optimal approach. Am J Physiol. 1994;266:E298–E307.
  • Jahoor F, Zhang XJ, Baba H, et al. Comparison of constant infusion and flooding dose techniques to measure muscle protein synthesis rate in dogs. J Nutr. 1992;122:878–887. doi:10.1093/jn/122.4.878
  • Davis TA, Fiorotto ML, Nguyen HV, et al. Aminoacyl-tRNA and tissue free amino acids pools are equilibrated after a flooding dose of phenylalanine. Am J Physiol. 1999;277:E103–E109.
  • Davis TA, Reeds PJ. Of flux and flooding: the advantages and problems of different isotopic methods for quantifying protein turnover in vivo: II. Methods based on the incorporation of a tracer. Curr Opin Clin Nutr Metab Care. 2001;4:51–56. doi:10.1097/00075197-200101000-00010
  • Steffee WP, Goldsmith RS, Pencharz PB, et al. Dietary protein intake and dynamic aspects of whole body nitrogen metabolism in adult humans. Metab Clin Exp 1976;25:281–297. doi:10.1016/0026-0495(76)90086-X
  • Jeevanandam M, Lowry SF, Horowitz GD, et al. Influence of increasing dietary intake on whole body protein kinetics in normal man. Clin Nutr. 1986;5:41–48.
  • Waterlow JC, Golden MHN, Garlick PS. Protein turnover in man measured with 15N: comparison of end products and dose regimes. Am J Physiol. 1978;235:E165–E174.
  • Nissim I, Yudkoff M, Segal S. A model for determination of total body protein synthesis based upon compartmental analysis of the plasma [15N]glycine decay curve. Metabolism. 1983;32:646–653.
  • Duggleby SL, Waterlow JC. The end-product method of measuring whole-body protein turnover: a review of published results and a comparison with those obtained by leucine infusion. Br J Nutr. 2005;94:141–153.
  • Grove G, Jackson AA. Measurement of protein turnover in normal man using the end-product method with oral [15N]glycine: comparison of single-dose and intermittent-dose regimens. Br J Nutr. 1995;74:491–507.
  • Owino VO, Slater C, Loechl CU. Using stable isotope techniques in nutrition assessments and tracking of global targets post-2015. Proc Nutr Soc. 2017;76:495–503. doi:10.1017/S0029665117000295

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.