101
Views
0
CrossRef citations to date
0
Altmetric
Stable Isotope Tracer & Methodology

Chemical and C and N stable isotope compositions of three species of epiphytic Tillandsia in a Caribbean coastal zone: air pollution sources and biomonitoring implications

, , , , , & show all
Pages 141-161 | Received 09 Sep 2023, Accepted 03 Dec 2023, Published online: 25 Jan 2024

References

  • Abril GA, Wannaz ED, Mateos AC, et al. Characterization of atmospheric emission sources of heavy metals and trace elements through a local-scale monitoring network using T. capillaris. Ecol Indic. 2014;40:153–161. doi:10.1016/j.ecolind.2014.01.008
  • Boltersdorf SH, Werner W. Lichens as a useful mapping tool?—an approach to assess atmospheric N loads in Germany by total N content and stable isotope signature. Environ Monit Assess. 2014;186:4767–4778. doi:10.1007/s10661-014-3736-3
  • Harmens H, Norris DA, Cooper DM, et al. Nitrogen concentrations in mosses indicate the spatial distribution of atmospheric nitrogen deposition in Europe. Environ Pollut. 2011;159:2852–2860. doi:10.1016/j.envpol.2011.04.041
  • Lazo P, Kika A, Qarri F, et al. Air quality assessment by moss biomonitoring and trace metals atmospheric deposition. Aerosol Air Qual Res. 2022;22:220008. doi:10.4209/aaqr.220008
  • Wolterbeek B. Biomonitoring of trace element air pollution: principles, possibilities and perspectives. Environ Pollut. 2002;120:11–21. doi:10.1016/S0269-7491(02)00124-0
  • Boltersdorf SH, Pesch R, Werner W. Comparative use of lichens, mosses and tree bark to evaluate nitrogen deposition in Germany. Environ Pollut. 2014;189:43–53. doi:10.1016/j.envpol.2014.02.017
  • Bauer GA, Gebauer G, Harrison AF, et al. Biotic and abiotic controls over ecosystem cycling of stable natural nitrogen, carbon and sulphur isotopes. In: Schulze E-D, editor. Carbon and nitrogen cycling in European forest ecosystems. Berlin: Springer; 2000. p. 189–214.
  • Harrison AF, Schulze E-D, Gebauer G, et al. Canopy uptake and utilization of atmospheric pollutant nitrogen. In: Schulze E-D, editor. Carbon and nitrogen cycling in European forest ecosystems. Berlin: Springer; 2000. p. 171–188.
  • Jung K, Gebauer G, Gehre M, et al. Anthropogenic impacts on natural nitrogen isotope variations in Pinus sylvestris stands in an industrially polluted area. Environ Pollut. 1997;97:175–181. doi:10.1016/S0269-7491(97)00053-5
  • Gebauer G, Giesemann A, Schulze E-D, et al. Isotope ratios and concentrations of sulfur and nitrogen in needles and soils of Picea abies stands as influenced by atmospheric deposition of sulfur and nitrogen compounds. Plant Soil. 1994;164:267–281. doi:10.1007/BF00010079
  • Gebauer G, Schulze E-D. Carbon and nitrogen isotope ratios in different compartments of a healthy and a declining Picea abies forest in the Fichtelgebirge, NE Bavaria. Oecologia. 1991;87:198–207. doi:10.1007/BF00325257
  • Gacia E, Soto DX, Roig R, et al. Phragmites australis as a dual indicator (air and sediment) of trace metal pollution in wetlands – the key case of Flix reservoir (Ebro River). Sci Total Environ. 2021;765:142789. doi:10.1016/j.scitotenv.2020.142789
  • Chaparro MAE, Lavornia JM, Chaparro MAE, et al. Biomonitors of urban air pollution: Magnetic studies and SEM observations of corticolous foliose and microfoliose lichens and their suitability for magnetic monitoring. Environ Pollut. 2013;172:61–69. doi:10.1016/j.envpol.2012.08.006
  • Izquieta-Rojano S, Elustondo D, Ederra A, et al. Pleurochaete squarrosa (Brid.) Lindb. as an alternative moss species for biomonitoring surveys of heavy metal, nitrogen deposition and δ15N signatures in a Mediterranean area. Ecol Indic. 2016;60:1221–1228. doi:10.1016/j.ecolind.2015.09.023
  • Lucadamo L, Gallo L, Corapi A. Detection of air quality improvement within a suburban district (southern Italy) by means of lichen biomonitoring. Atmos Pollut Res. 2022;13:101346. doi:10.1016/j.apr.2022.101346
  • Liu X-Y, Wu D, Song X, et al. A non-steady state model based on dual nitrogen and oxygen isotopes to constrain moss nitrate uptake and reduction. J Geophys Res Biogeosci. 2020;125:e2019JG005498.
  • Benzing DH. Bromeliaceae: Profile of an adaptive radiation. Cambridge: Cambridge University Press; 2000.
  • Zheng G, Pemberton R, Li P. Bioindicating potential of strontium contamination with Spanish moss Tillandsia usneoides. J Environ Radioact. 2016;152:23–27. doi:10.1016/j.jenvrad.2015.11.010
  • Fernandez JA, Boquete MT, Carballeira A, et al. A critical review of protocols for moss biomonitoring of atmospheric deposition: Sampling and sample preparation. Sci Total Environ. 2015;517:132–150. doi:10.1016/j.scitotenv.2015.02.050
  • González-Miqueo L, Elustondo D, Lasheras E, et al. Use of native mosses as biomonitors of heavy metals and nitrogen deposition in the surroundings of two steel works. Chemosphere. 2010;78:965–971. doi:10.1016/j.chemosphere.2009.12.028
  • Piazzetta KD, Ramsdorf WA, Maranho LT. Use of airplant Tillandsia recurvata L., Bromeliaceae, as biomonitor of urban air pollution. Aerobiologia (Bologna). 2019;35:125–137. doi:10.1007/s10453-018-9545-3
  • Pignata M, Gudino GL, Wannaz ED, et al. Atmospheric quality and distribution of heavy metals in Argentina employing Tillandsia capillaris as a biomonitor. Environ Pollut. 2002;120:59–68.
  • de Souza Pereira M, Heitmann D, Reifenhauser W, et al. Persistent organic pollutants in atmospheric deposition and biomonitoring with Tillandsia usneoides (L.) in an industrialized area in Rio de Janeiro state, southeast Brazil - Part II: PCB and PAH. Chemosphere. 2007;67:1736–1745.
  • Loppi S, Pozo K, Estellano VH, et al. Accumulation of polycyclic aromatic hydrocarbons by lichen transplants: Comparison with gas-phase passive air samplers. Chemosphere. 2015;134:39–43. doi:10.1016/j.chemosphere.2015.03.066
  • Felix JD, Avery GB, Mead RN, et al. Nitrogen content and isotopic composition of Spanish moss (Tillandsia usneoides L.): Reactive nitrogen variations and source implications across an urban coastal air shed. Environ Process. 2016;3:711–722. doi:10.1007/s40710-016-0195-6
  • Liu X-Y, Koba K, Liu C-Q, et al. Pitfalls and new mechanisms in moss isotope biomonitoring of atmospheric nitrogen deposition. Environ Sci Technol. 2012;46:12557–12566. doi:10.1021/es300779h
  • Galhardi JA, Garcia-Tenorio R, Diaz Frances I, et al. Natural radionuclides in lichens, mosses and ferns in a thermal power plant and in an adjacent coal mine area in southern Brazil. J Environ Radioact. 2017;167:43–53. doi:10.1016/j.jenvrad.2016.11.009
  • Malm O, de Freitas Fonseca M, Hissnauer Miguel P, et al. Use of epiphyte plants as biomonitors to map atmospheric mercury in a gold trade center city, Amazon, Brazil. Sci Total Environ. 1998;213:57–64. doi:10.1016/S0048-9697(98)00074-6
  • Cardoso-Gustavson P, Fernandes FF, Alves ES, et al. Tillandsia usneoides: a successful alternative for biomonitoring changes in air quality due to a new highway in São Paulo, Brazil. Environ Sci Pollut Res. 2016;23:1779–1788. doi:10.1007/s11356-015-5449-8
  • De La Cruz ARH, Ayuque RFO, De La Cruz RWH, et al. Air quality biomonitoring of trace elements in the metropolitan area of Huancayo, Peru using transplanted Tillandsia capillaris as a biomonitor. An Acad Bras Ciênc. 2020;92(1):e20180813. doi:10.1590/0001-3765202020180813
  • Díaz-Álvarez EA, Barrera Ede la. Characterization of nitrogen deposition in a megalopolis by means of atmospheric biomonitors. Sci Rep. 2018;8:13569. doi:10.1038/s41598-018-32000-5
  • Sanchez-Chardi A. Biomonitoring potential of five sympatric Tillandsia species for evaluating urban metal pollution (Cd, Hg and Pb). Atmos Environ. 2016;131:352–359. doi:10.1016/j.atmosenv.2016.02.013
  • Wannaz ED, ml P. Calibration of four species of Tillandsia as air pollution biomonitors. J Atmos Chem. 2006;53:185–209. doi:10.1007/s10874-005-9006-6
  • Zambrano Garcia A, Medina Coyotzin C, Rojas Amaro A, et al. Distribution and sources of bioaccumulative air pollutants at Mezquital Valley, Mexico, as reflected by the atmospheric plant Tillandsia recurvata L. Atmos Chem Phys. 2009;9:6479–6494. doi:10.5194/acp-9-6479-2009
  • Delgado V, Ederra A, Santamaría JM. Nitrogen and carbon contents andδ15N andδ13C signatures in six bryophyte species: assessment of long-term deposition changes (1980–2010) in Spanish beech forests. Glob Change Biol. 2013;19:2221–2228. doi:10.1111/gcb.12210
  • Hietz P, Wanek W. Size-dependent variation of carbon and nitrogen isotope abundances in epiphytic bromeliads. Plant Biol. 2003;5:137–142. doi:10.1055/s-2003-40730
  • Sosa G, Vega E, Gonzalez-Avalos E, et al. Air pollutant characterization in Tula industrial corridor, Central Mexico, during the MILAGRO study. Biomed Res Int. 2013;2013:521728.
  • Díaz-Álvarez EA, Barrera Ede la. Isotopic biomonitoring of anthropic carbon emissions in a megalopolis. PeerJ. 2020;8:e9283. doi:10.7717/peerj.9283
  • Bermejo-Orduna R, McBride JR, Shiraishi K, et al. Biomonitoring of traffic-related nitrogen pollution using Letharia vulpina (L.) Hue in the Sierra Nevada, California. Sci Total Environ. 2014;490:205–212. doi:10.1016/j.scitotenv.2014.04.119
  • Felix JD, Elliott EM, Gish T, et al. Examining the transport of ammonia emissions across landscapes using nitrogen isotope ratios. Atmos Environ. 2014;95:563–570. doi:10.1016/j.atmosenv.2014.06.061
  • Saurer M, Cherubini P, Ammann M, et al. First detection of nitrogen from NOx in tree rings: a 15N/14N study near a motorway. Atmos Environ. 2004;38:2779–2787. doi:10.1016/j.atmosenv.2004.02.037
  • Montero Alvarez A, Alvarez E, R J, et al. Lead isotope ratios in lichen samples evaluated by ICP-ToF-MS to assess possible atmospheric pollution sources in Havana, Cuba. Environ Monit Assess. 2017;189:28. doi:10.1007/s10661-016-5739-8
  • Montero Alvarez A, Estévez Alvarez JR, Iglesias Brito H, et al. Lichen based biomonitoring of air quality in Havana City west side. J Radioanal Nucl Chem. 2006;270:63–67.
  • Morera-Gómez Y, Alonso-Hernández CM, Armas-Camejo A, et al. Pollution monitoring in two urban areas of Cuba by using Tillandsia recurvata (L.) L. and top soil samples: Spatial distribution and sources. Ecol Indic. 2021;126:107667. doi:10.1016/j.ecolind.2021.107667
  • Turtos Carbonell LM, Meneses Ruiz E, Sanchez Gacita M, et al. Assessment of the impacts on health due to the emissions of Cuban power plants that use fossil fuel oils with high content of sulfur. Estimation of External Costs. Atmos Environ. 2007;41:2202–2213.
  • Pellegrini E, Lorenzini G, Loppi S, et al. Evaluation of the suitability of Tillandsia usneoides (L.) L. as biomonitor of airborne elements in an urban area of Italy, Mediterranean basin. Atmos Pollut Res. 2014;5:226–235. doi:10.5094/APR.2014.028
  • González-Miqueo L, Elustondo D, Lasheras E, et al. Heavy metal and nitrogen monitoring using moss and topsoil samples in a Pyrenean Forest catchment. Water Air Soil Pollut. 2010;210:335–346. doi:10.1007/s11270-009-0256-9
  • Steinnes E, Rühling Å, Lippo H, et al. Reference materials for large-scale metal deposition surveys. Accredit Qual Assur. 1997;2:243–249. doi:10.1007/s007690050141
  • Rudnick RL, Gao S. Composition of the continental crust. In: Holland HD, Turekian KK, editor. Treatise on geochemistry. Oxford: Elsevier; 2014. p. 1–51.
  • Abril GA, Wannaz ED, Mateos AC, et al. Biomonitoring of airborne particulate matter emitted from a cement plant and comparison with dispersion modelling results. Atmos Environ. 2014;82:154–163. doi:10.1016/j.atmosenv.2013.10.020
  • Rodriguez JH, Weller SB, Wannaz ED, et al. Air quality biomonitoring in agricultural areas nearby to urban and industrial emission sources in Córdoba province, Argentina, employing the bioindicator Tillandsia capillaris. Ecol Indic. 2011;11:1673–1680. doi:10.1016/j.ecolind.2011.04.015
  • Morera-Gómez Y, Elustondo D, Lasheras E, et al. Chemical characterization of PM10 samples collected simultaneously at a rural and an urban site in the Caribbean coast: Local and long-range source apportionment. Atmos Environ. 2018;192:182–192. doi:10.1016/j.atmosenv.2018.08.058
  • Morera-Gómez Y, Santamaría JM, Elustondo D, et al. Determination and source apportionment of major and trace elements in atmospheric bulk deposition in a Caribbean rural area. Atmos Environ. 2019;202:93–104. doi:10.1016/j.atmosenv.2019.01.019
  • Morera-Gómez Y, Alonso-Hernández CM, Santamaría JM, et al. Levels, spatial distribution, risk assessment, and sources of environmental contamination vectored by road dust in Cienfuegos (Cuba) revealed by chemical and C and N stable isotope compositions. Environ Sci Pollut Res. 2020;27:2184–2196. doi:10.1007/s11356-019-06783-7
  • Moreno T, Querol X, Alastuey A, et al. Variations in vanadium, nickel and lanthanoid element concentrations in urban air. Sci Total Environ. 2010;408:4569–4579. doi:10.1016/j.scitotenv.2010.06.016
  • Viana M, Kuhlbusch TJ, Querol X, et al. Source apportionment of particulate matter in Europe: A review of methods and results. J Aerosol Sci. 2008;39:827–849. doi:10.1016/j.jaerosci.2008.05.007
  • Winter K, Aranda J, Holtum JAM. Carbon isotope composition and water-use efficiency in plants with crassulacean acid metabolism. Funct Plant Biol. 2005;32:381. doi:10.1071/FP04123
  • Castaneda Miranda AG, Chaparro MAE, Chaparro MAE, et al. Magnetic properties of Tillandsia recurvata L. and its use for biomonitoring a Mexican metropolitan area. Ecol Indic. 2016;60:125–136. doi:10.1016/j.ecolind.2015.06.025
  • Mejía-Echeverry D, Chaparro MAE, Duque-Trujillo JF, et al. Magnetic biomonitoring as a tool for assessment of air pollution patterns in a tropical valley using Tillandsia sp. Atmosphere (Basel). 2018;9:283. doi:10.3390/atmos9070283
  • Widory D. Combustibles, fuels and their combustion products: A view through carbon isotopes. Combust Theory Model. 2006;10:831–841. doi:10.1080/13647830600720264
  • Matiz A, Mioto PT, Mayorga AY, et al. CAM photosynthesis in bromeliads and agaves: What can we learn from these plants? In: Dubinsky Z, editor. Photosynthesis. London: IntechOpen; 2013. p. 91-134–134. doi:10.5772/56219
  • Dawson TE, Mambelli S, Plamboeck AH, et al. Stable isotopes in plant ecology. Annu Rev Ecol Syst. 2002;33:507–559. doi:10.1146/annurev.ecolsys.33.020602.095451
  • Felix JD, Elliott EM. Isotopic composition of passively collected nitrogen dioxide emissions: Vehicle, soil and livestock source signatures. Atmos Environ. 2014;92:359–366. doi:10.1016/j.atmosenv.2014.04.005
  • Gerdol R, Bragazza L, Marchesini R, et al. Use of moss (Tortula muralis Hedw.) for monitoring organic and inorganic air pollution in urban and rural sites in Northern Italy. Atmos Environ. 2002;36:4069–4075. doi:10.1016/S1352-2310(02)00298-4
  • Hertel O, Skjøth CA, Løfstrøm P, et al. Modelling nitrogen deposition on a local scale—A review of the current state of the art. Environ Chem. 2006;3:317–337. doi:10.1071/EN06038
  • Pearson J, Wells DM, Seller KJ, et al. Traffic exposure increases natural15N and heavy metal concentrations in mosses. New Phytol. 2000;147:317–326. doi:10.1046/j.1469-8137.2000.00702.x
  • Amato F, Favez O, Pandolfi M, et al. Traffic induced particle resuspension in Paris: Emission factors and source contributions. Atmos Environ. 2016;129:114–124. doi:10.1016/j.atmosenv.2016.01.022
  • Taiwo AM, Harrison RM, Shi Z. A review of receptor modelling of industrially emitted particulate matter. Atmos Environ. 2014;97:109–120. doi:10.1016/j.atmosenv.2014.07.051
  • Raymond BA, Bassingthwaighte T, Shaw PD. Measuring nitrogen and sulphur deposition in the Georgia Basin, British Columbia, using lichens and moss. J Limnol. 2010;69:22–32. doi:10.4081/jlimnol.2010.s1.22
  • Johansson O, Nordin A, Olofsson J, et al. Responses of epiphytic lichens to an experimental whole-tree nitrogen-deposition gradient. New Phytol. 2010;188:1075–1084. doi:10.1111/j.1469-8137.2010.03426.x
  • Morera-Gómez Y, Alonso-Hernández CM, Cartas-Águila HA, et al. Elucidating the sources and dynamics of PM10 aerosols in Cienfuegos (Cuba) using their multi-stable and radioactive isotope and ion compositions. Atmos Res. 2020;243:105038. doi:10.1016/j.atmosres.2020.105038
  • Morera-Gómez Y, Santamaría JM, Elustondo D, et al. Carbon and nitrogen isotopes unravels sources of aerosol contamination at Caribbean rural and urban coastal sites. Sci Total Environ. 2018;642:723–732. doi:10.1016/j.scitotenv.2018.06.106
  • Felix JD, Elliott EM, Gish TJ, et al. Characterizing the isotopic composition of atmospheric ammonia emission sources using passive samplers and a combined oxidation-bacterial denitrifier approach. Rapid Commun Mass Spectrom. 2013;27:2239–2246. doi:10.1002/rcm.6679
  • Morera-Gómez Y, García-Moya A, Armas-Camejo A, et al. State service “Study of air pollution in Cienfuegos”. 2019 Annual Report. Centro de estudios ambientales de Cienfuegos (CEAC). Cuba; 2020. p. 16. Spanish.
  • Phoenix GK, Hicks WK, Cinderby S, et al. Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts. Glob Change Biol. 2006;12:470–476. doi:10.1111/j.1365-2486.2006.01104.x
  • Bobbink R, Hicks K, Galloway J, et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl. 2010;20:30–59. doi:10.1890/08-1140.1
  • Bhattarai H, Wu G, Zheng X, et al. Wildfire-derived nitrogen aerosols threaten the fragile ecosystem in Himalayas and Tibetan Plateau. Environ Sci Technol. 2023;57(25):9243–9251.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.