28
Views
0
CrossRef citations to date
0
Altmetric
Stable Isotope Tracer & Methodology

Towards the compatibility of stable isotope data: review of related concepts, recent progress with reference materials and current challenges

Received 15 Feb 2024, Accepted 06 May 2024, Published online: 12 Jun 2024

References

  • Bowen GJ, Revenaugh J. Interpolating the isotopic composition of modern meteoric precipitation. Water Res Research. 2003;39:1299. doi:10.1029/2003WR002086
  • WMO. GAW Report No. 194. 15th WMO/IAEA Meeting of Experts on Carbon Dioxide, Other Greenhouse Gases and Related Tracers Measurement Techniques (Jena, Germany, 7–10 September 2009). Geneva: World Meteorological Organization; 2011.
  • WMO. GAW Report No. 242. 19th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases and Related Measurement Techniques (GGMT-2017), Duebendorf, ZH, Switzerland, 27–31 August 2017. Geneva: World Meteorological Organization; 2018.
  • WMO. GAW Report No. 255. 20th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases and Related Measurement Techniques (GGMT-2019), Jeju Island, South Korea, 2–5 September 2019. Geneva: World Meteorological Organization; 2020.
  • Worthy DEJ, Rauh MK, Huang L, et al. Results of a long-term international comparison of greenhouse gas and isotope measurements at the global atmosphere watch (GAW) observatory in Alert, Nunavut, Canada. Atmos Meas Tech Discuss. 2023;16:5909–5935. doi:10.5194/amt-16-5909-2023
  • Bergel SJ, Barkan E, Stein M, et al. Carbonate 17Oexcess as a paleo-hydrology proxy: triple oxygen isotope fractionation between H2O and biogenic aragonite, derived from freshwater mollusks. Geochim Cosmochim Acta. 2020;275:36–47. doi:10.1016/j.gca.2020.02.005
  • Landais A, Ekaykin A, Barkan E, et al. Seasonal variations of 17O-excess and d-excess in snow precipitation at Vostok station, East Antarctica. J Glaciol. 2012;58:725–733. doi:10.3189/2012JoG11J237
  • Surma J, Assonov S, Herwartz D, et al. The evolution of 17O-excess in surface water of the arid environment during recharge and evaporation. Sci Rep. 2018;8:4972. doi:10.1038/s41598-018-23151-6
  • Luz B, Barkan E. Proper estimation of marine gross O2 production with 17O/16O and 18O/16O ratios of dissolved O2. Geophys Res Lett. 2011;38:L19606. doi:10.1029/2011GL049138
  • Koren G, Schneider L, van der Velde IR, et al. Global 3-D simulations of the triple oxygen isotope signature Δ17O in atmospheric CO2. J Geophys Res Atmos. 2019;124:8808–8836. doi:10.1029/2019JD030387
  • Wassenaar L, Terzer-Wassmuth S, Douence C. Progress and challenges in dual- and triple-isotope (δ18O, δ2H, Δ17O) analyses of environmental waters: an international assessment of laboratory performance. Rapid Commun Mass Spectrom. 2021;35:e9193. doi:10.1002/rcm.9193
  • Brand WA, Coplen TB, Vogl J, et al. Assessment of international reference materials for isotope-ratio analysis (IUPAC technical report). Pure Appl Chem. 2014;86:425–467. doi:10.1515/pac-2013-1023
  • Meier-Augenstein W, Schimmelmann A. A guide for proper utilisation of stable isotope reference materials. Isot Environ Health Stud. 2019;55:113–128. doi:10.1080/10256016.2018.1538137
  • Werner RA, Brand WA. Referencing strategies and techniques in stable isotope ratio analysis. Rapid Commun Mass Spectrom. 2001;15:501–519. doi:10.1002/rcm.258
  • Paul D, Skrzypek G, Forizs I. Normalization of measured stable isotopic compositions to isotope reference scales – a review. Rapid Commun Mass Spectrom. 2007;21:3006–3014. doi:10.1002/rcm.3185
  • Skrzypek G. Normalization procedures and reference material selection in stable HCNOS isotope analyses: an overview. Anal Bioanal Chem. 2013;405:2815–2823. doi:10.1007/s00216-012-6517-2
  • Dunn P, Skrzypek G. Perspective: hidden biases in isotope delta results and the need for comprehensive reporting. Rapid Commun Mass Spectrom. 2023;37:e9623. doi:10.1002/rcm.9623
  • Skrzypek G, Allison CE, Böhlke JK, et al. Minimum requirements for publishing hydrogen, carbon, nitrogen, oxygen and sulfur stable-isotope delta results (IUPAC technical report). Pure Appl Chem. 2022;94:1249–1255. doi:10.1515/pac-2021-1108
  • Meija J. Isotopic measurements of carbon dioxide: the role of measurement science and standards. Anal Bioanal Chem. 2024;416:2013–2021. doi:10.1007/s00216-023-05000-2
  • Qi H, Moossen H, Meijer HAJ, et al. USGS44, a new high-purity calcium carbonate reference material for δ13C measurements. Rapid Commun Mass Spectrom. 2021;35:e9006. doi:10.1002/rcm.9006
  • Gröning M. Some pitfalls in the uncertainty evaluation of isotope delta reference materials. Accredit Qual Assur. 2023;28:101–114. doi:10.1007/s00769-022-01527-6
  • Assonov S, Gröning M, Fajgelj A. IAEA stable isotope reference materials: addressing the needs of atmospheric greenhouse gas monitoring. In: 18th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases and Related Tracers Measurement Techniques (GGMT-2015). GAW Report No. 229; World Meteorological Organization; 2016. p. 76–80.
  • Assonov S. Summary and recommendations from the international atomic energy agency technical meeting on the development of stable isotope reference products (21–25 November 2016). Rapid Commun Mass Spectrom. 2018;32:827–830. doi:10.1002/rcm.8102
  • Coplen TB, Brand WA, Gehre M, et al. New guidelines for δ13C measurements. Anal Chem. 2006;78:2439–2441. doi:10.1021/ac052027c
  • Assonov S, Groening M, Fajgelj A, et al. Preparation and characterisation of IAEA-603, a new primary reference material aimed at the VPDB scale realisation for δ13C and δ18O determination. Rapid Commun Mass Spectrom. 2020;34:e8867. doi:10.1002/rcm.8867
  • Assonov S, Fajgelj A, Hélie J-F, et al. Characterisation of new reference materials IAEA-610, IAEA-611 and IAEA-612 aimed at the VPDB δ13C scale realisation with small uncertainty. Rapid Commun Mass Spectrom. 2021;35:e9014. doi:10.1002/rcm.9014
  • Hillaire-Marcel C, Kim S-T, Landais A, et al. A stable isotope toolbox for water and inorganic carbon cycle studies. Nat Rev Earth Environ. 2021;2:699–719. doi:10.1038/s43017-021-00209-0
  • Assonov S, Fajgelj A, Allison C, et al. On the metrological traceability and hierarchy of stable isotope reference materials aimed at realisation of the VPDB scale: revision of the VPDB δ13C scale based on multipoint scale-anchoring RMs. Rapid Commun Mass Spectrom. 2021;35:e9018. doi:10.1002/rcm.9018
  • Hélie J-F, Adamowicz-Walczak A, Middlestead P, et al. Discontinuity in the realization of the Vienna Peedee Belemnite carbon isotope ratio scale. Anal Chem. 2021;93:10740–10743. doi:10.1021/acs.analchem.1c02458
  • Chartrand M, Liu F, Merrick J, et al. Final report for CCQM-P212: coherence of carbon isotope delta reference materials. Metrologia. 2023;60:08028. doi:10.1088/0026-1394/60/1A/08028
  • Chartrand M, Meija J, Hélie J-F, et al. Characterization of vanillin carbon isotope delta reference materials. Anal Bioanal Chem. 2022;414:7877–7883. doi:10.1007/s00216-022-04322-x
  • De Bièvre P. Essential for metrology in chemistry, but not yet achieved: truly internationally understood concepts and associated terms. Metrologia. 2008;45:335–341. doi:10.1088/0026-1394/45/3/011
  • ISO 13528:2015. Statistical methods for use in proficiency testing by interlaboratory comparison. Geneva: International Organization for Standardization; 2015.
  • Schimmelmann A, Qi H, Coplen TB, et al. Organic reference materials for hydrogen, carbon, and nitrogen stable isotope-ratio measurements: caffeines, n-alkanes, fatty acid methyl esters, glycines, l-valines, polyethylenes, and oils. Anal Chem. 2016;88:4294–4302. doi:10.1021/acs.analchem.5b04392
  • Schimmelmann A, Qi H, Dunn P, et al. Food matrix reference materials for hydrogen, carbon, nitrogen, oxygen, and sulfur stable isotope-ratio measurements: collagens, flours, honeys, and vegetable oils. J Agric Food Chem. 2020;68:10852–10864. doi:10.1021/acs.jafc.0c02610
  • ISO Standard 17025:2017. General requirements for the competence of testing and calibration laboratories. Geneva: International Organization for Standardization; 2017.
  • De Bièvre P. Traceability of (values carried by) reference materials. Accred Qual Assur. 2000;5:224–230. doi:10.1007/s007690050452
  • Bievre PD. Metrological traceability is a prerequisite for evaluation of measurement uncertainty. Accred Qual Assur. 2010;15:437–438. doi:10.1007/s00769-010-0680-y
  • De Bièvre P. ‘Fitness-for-intended-use’ is an important concept in measurement. Accred Qual Assur. 2010;15:545–546. doi:10.1007/s00769-010-0696-3
  • Bievre PD. Author’s reply to the comment on “chemists’ views on measurement results are influenced too much by statistical considerations and not enough by the application of simple metrological principles”. Accred Qual Assur. 2011;16:585–586. doi:10.1007/s00769-011-0832-8
  • Bièvre P. About some basic concepts for metrology in analytical chemistry. Accred Qual Assur. 2012;17:355–356. doi:10.1007/s00769-012-0898-y
  • De Bièvre P. Is “consensus value” a correct term for the product of pooling measurement results? Accred Qual Assur. 2012;17:639–640. doi:10.1007/s00769-012-0938-7
  • De Bievre P, Dybkaer R, Fajgelj A, et al. Metrological traceability of measurement results in chemistry: concepts and implementation (IUPAC technical report). Pure Appl Chem. 2011;83:1873–1935. doi:10.1351/PAC-REP-07-09-39
  • VIM 3. (2008). International vocabulary of metrology. Basic and general concepts and associated terms,: 3rd edition, Joint Committee for Guides in Metrology (JCGM 200:2012) [accessed 2024 April 23], available at https://www.bipm.org/en/committees/jc/jcgm/publications.
  • JCGM 100:2008. Evaluation of Measurement Data – Guide to the Expression of Uncertainty in Measurement (ISO GUM 1995 with minor corrections). Joint Committee for Guides in Metrology (2008) [accessed 2022 December 28], available at http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf.
  • De Bièvre P. More on the case of using “analyte” as “measurand”. Accred Qual Assur. 2013;18:363–364. doi:10.1007/s00769-013-0996-5
  • Verkouteren RM, Klinedinst DB. Value assignment and uncertainty estimation of selected light stable isotope reference materials: RMs 8543-8545, RMs 8562-8564, and RM 8566. National Institute of Standards and Technology; 2004. (NIST Special Publication 260-149).
  • Aerts-Bijma AT, van Buuren AC, Paul D, et al. The absolute δ18O value for SLAP with respect to VSMOW reveals a much lower value than previously established. Rapid Commun Mass Spectrom. 2024;38:e9678. doi:10.1002/rcm.9678
  • Stock M, Davidson S, Fang H, et al. Maintaining and disseminating the kilogram following its redefinition. Metrologia. 2017;54:S99. doi:10.1088/1681-7575/aa8d2d
  • Baertschi P. Absolute 18O content of standard mean ocean water. Earth Planet Sci Lett. 1976;31:341–344. doi:10.1016/0012-821X(76)90115-1
  • Reference Sheet for VSMOW2 and SLAP2, available at https://nucleus.iaea.org/rpst/Documents/VSMOW2_SLAP2.pdf.
  • Craig H. Standard for reporting concentrations of deuterium and oxygen-18 in natural waters. Science. 1961;133:1833–1834. doi:10.1126/science.133.3467.1833
  • Gonfiantini R. Standards for stable isotope measurements in natural compounds. Nature. 1978;271:534–536. doi:10.1038/271534a0
  • Gonfiantini R. Advisory group meeting on stable isotope reference samples for geochemical and hydrological investigations, Vienna, Austria, 19–21 September 1983. Vienna: International Atomic Energy Agency; 1984.
  • Hut G. Consultants’ group meeting on stable isotope reference samples for geochemical and hydrological investigations, Vienna, Austria, 16–18 September, 1985. Vienna: International Atomic Energy Agency; 1987.
  • Gonfiantini R, Stichler W, Rozanski K. Standards and intercomparison materials distributed by the International Atomic Energy Agency for stable isotope measurements. In: Reference and intercomparison materials for stable isotopes of light elements. Proceedings of a consultants meeting held in Vienna, 1–3 December 1993. Vienna: International Atomic Energy Agency; 1995. p. 13–19. (TECDOC-825).
  • IAEA. Reference sheet GRESP Greenland summit precipitation, water (˙δ2H,˙δ18O). Vienna: International Atomic Energy Agency; 2020. Available at https://analytical-reference-materials.iaea.org/gresp
  • Groening M. International stable isotope reference materials. In: de Groot PA, editor. Handbook of stable isotope analytical techniques. Amsterdam: Elsevier; 2004. p. 875–906.
  • IAEA. Reference Sheet for Reference Materials IAEA-S-1 (NIST – RM8554), IAEA-S-2 (NIST – RM8555), IAEA-S-3 (NIST – RM 8529); 2020. Available at https://nucleus.iaea.org/sites/ReferenceMaterials/Pages/IAEA-S-1.aspx.
  • Mann JL, Vocke RD, Kelly WR. Revised δ34S reference values for IAEA sulfur isotope reference materials S-2 and S-3. Rapid Commun Mass Spectrom. 2009;23:1116–1124. doi:10.1002/rcm.3977
  • Assonov S. Perspective: On the discontinuity between the scale realization VPDB2020 and VPDB2006 – the underestimated role of measurement uncertainties? Rapid Commun Mass Spectrom. 2024. doi:10.1002/rcm.9779
  • Assonov S. Report of Technical Meeting on the Development of IAEA Stable Isotope Reference Products, Vienna, Austria, 21–25 November 2016. Meeting Ref. No: K4-TM-52133. Vienna: International Atomic Energy Agency; 2018. Available at https://analytical-reference-materials.iaea.org/publications
  • IAEA. Reference Sheet for Certified Reference Material IAEA-603, 2016. Available at https://analytical-reference-materials.iaea.org/iaea-603 [Accessed April 16, 2024].
  • Gonfiantini R. Consultants’ meeting on stable isotope standards and intercalibration in hydrology and in geochemistry, Vienna, Austria, 8–10 sept. 1976. Vienna: International Atomic Energy Agency; 1976.
  • van der Veen AMH, Pauwels J. Uncertainty calculations in the certification of reference materials. 1. Principles of analysis of variance. Accred Qual Assur. 2000;5:464–469. doi:10.1007/s007690000237
  • van der Veen AMH, Linsinger T, Pauwels J. Uncertainty calculations in the certification of reference materials. 2. Homogeneity study. Accred Qual Assur. 2001;6:26–30. doi:10.1007/s007690000238
  • van der Veen AMH, Linsinger TPJ, Lamberty A, et al. Uncertainty calculations in the certification of reference materials 3. Stability study. Accred Qual Assur. 2001;6:257–263. doi:10.1007/s007690000292
  • van der Veen AMH, Linsinger TPJ, Schimmel H, et al. Uncertainty calculations in the certification of reference materials – 4. Characterisation and certification. Accred Qual Assur. 2001;6:290–294. doi:10.1007/PL00010459
  • ISO Guide 35:2017. Reference materials – guidance for characterization and assessment of homogeneity and stability. Geneva: International Organization for Standardization; 2017.
  • Verkouteren RM. Preparation, characterization, and value assignment of carbon dioxide isotopic reference materials: RMs 8562, 8563, and 8564. Anal Chem. 1999;71:4740–4746. doi:10.1021/ac990233c
  • Ghosh P, Patecki M, Rothe M, et al. Calcite-CO2 mixed into CO2-free air: a new CO2-in-air stable isotope reference material for the VPDB scale. Rapid Commun Mass Spectrom. 2005;19:1097–1119. doi:10.1002/rcm.1886
  • Flesch GD, Anderson ARJ, Svec HJ. A secondary isotopic standard for 6Li/7Li determinations. Int J Mass Spectrom Ion Phys. 1973;12:265–272. doi:10.1016/0020-7381(73)80043-9
  • Stichler W. Interlaboratory comparison of new materials for carbon and oxygen isotope ratio measurements. In: Reference and intercomparison materials for stable isotopes of light elements. Proceedings of a consultants meeting held in Vienna, 1–3 December 1993. Vienna: International Atomic Energy Agency; 1995. p. 67–74. (TECDOC-825).
  • BIMP. Temperature Scales. 1. ITS-90. https://www.bipm.org/en/committees/cc/cct/temperature-scales [Accessed April 27, 2024].
  • Qi HP, Coplen TB, Mroczkowski SJ, et al. A new organic reference material, l-glutamic acid, USGS41a, for δ13C and δ15N measurements – a replacement for USGS41. Rapid Commun Mass Spectrom. 2016;30:859–866. doi:10.1002/rcm.7510
  • Brand WA, Assonov SS, Coplen TB. Correction for the 17O interference in δ(13C) measurements when analyzing CO2 with stable isotope mass spectrometry (IUPAC technical report). Pure Appl Chem. 2010;82:1719–1733. doi:10.1351/PAC-REP-09-01-05
  • Assonov S. Exploring δ13C data compatibility in a broad δ13C range: reassembling δ13C values obtained for NIST CO2 RMs 8562–8564 at different laboratories. Rapid Commun Mass Spectrom. 2024;38:e9666. doi:10.1002/rcm.9666
  • Assonov S. Assessment of the accuracy of the 17O correction algorithm used in δ13C determinations by CO2 mass-spectrometry. Rapid Commun Mass Spectrom. 2023;37:e9490. doi:10.1002/rcm.9490
  • Viallon J, Choteau T, Flores E, et al. Final report of CCQM-P204, comparison on CO2 isotope ratios in pure CO2. Metrologia. 2023;60:08026. doi:10.1088/0026-1394/60/1A/08026
  • USGS. USGS44 Calcium Carbonate. Reston, November 16, 2020. https://www.usgs.gov/media/files/rsil-report-stable-isotopic-composition-reference-material-usgs44-0 [accessed 2024 April 23]. 2020. Available from: https://isotopes.usgs.gov/lab/referencematerials/Note_on_USGS44_CaCO3.pdf.
  • USGS. Note on USGS44. (Downloaded from USGS webpage on May 5, 2020). July 31, 2019.
  • IUPAC. Press release of the IUPAC meeting in 2017. 2018, available at https://iupac.org/standard-atomic-weights-of-14-chemical-elements-revised/ [Accessed April 23, 2024].
  • Friedman I, O’Neil J, Cebula G. Two new carbonate stable-isotope standards. Geostand Newslett. 1982;6:11–12. doi:10.1111/j.1751-908X.1982.tb00340.x
  • IAEA. Reference sheet for reference material LSVEC. Vienna: International Atomic Energy Agency; 2018.
  • ISO Standard 17034:2016. General requirements for the competence of reference material producers. Geneva: International Organization for Standardization; 2016.
  • De Bièvre P. Measurement uncertainty is not synonym of measurement repeatability or measurement reproducibility. Accredit Qual Assur. 2008;13:61–62. doi:10.1007/s00769-008-0371-0
  • Qi H, Coplen TB, Jordan JA. Three whole-wood isotopic reference materials, USGS54, USGS55, and USGS56, for δ2H, δ18O, δ13C, and δ15N measurements. Chem Geol. 2016;442:47–53. doi:10.1016/j.chemgeo.2016.07.017
  • Reference Material Information Sheet for Reference Material 8545 LSVEC (Lithium Isotopes in Lithium Carbonate). NIST; 2023. [accessed 2024 January 15]. Available from: https://nucleus.iaea.org/sites/ReferenceMaterials/Pages/LSVEC.aspx.
  • Cecelski C, Toman B, Liu F, et al. Errors-in-variables calibration with dark uncertainty. Metrologia. 2022;59:045002. doi:10.1088/1681-7575/ac711c
  • USGS. Report of Stable Isotopic Composition, Reference Materials USGS82 and USGS83 (Hydrogen, Carbon, and Oxygen Isotopes in Honey). United States Geological Survey; 2020.
  • USGS. Report of Stable Isotopic Composition, Reference Materials USGS84-0.15 μL and USGS84-0.25 μL (Hydrogen, Carbon, and Oxygen Isotopes in Sicilian Olive Oil that is Crimp-sealed in Silver Tube Segments). United States Geological Survey; 2020.
  • USGS. Report of Stable Isotopic Composition, Reference Materials USGS88 and USGS89 (Hydrogen, Carbon, Nitrogen, Oxygen, and Sulfur Isotopes in Collagen). United States Geological Survey; 2020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.