28
Views
0
CrossRef citations to date
0
Altmetric
Radio Ecology & Natural Radioactivity

The Bacau (Romania) phosphogypsum stacks as a source of radioactive threat: a case study

, , , , , , & show all
Received 08 Feb 2024, Accepted 06 May 2024, Published online: 01 Jul 2024

References

  • Altschuler ZS, Clarke RS, Young EJ. Geochemistry of uranium in apatite and phosphorite. Washington (DC): U.S. Geological Survey; 1958. (Geological Survey Professional Paper 314-d).
  • McConnell D. Apatite: Its crystal chemistry, mineralogy, utilization, and geologic and biologic occurrences. Wien, New York: Springer; 2012. (Applied Mineralogy; 5).
  • Khater AE, Higgy RH, Pimpl M. Radiological impacts of natural radioactivity in Abu-Tartor phosphate deposits. Egypt. J Environ Radioact. 2001;55:255–267. doi:10.1016/S0265-931X(00)00193-4
  • USEPA. Potential uses of phosphogypsum and associated risks: background information document. Washington (DC): U.S. Environmental Protection Agency; 1992; (EPA 402-R92-002).
  • Iancu MA, Dumitras DG, Marincea S, et al. Determination of phosphogypsum from Romania by SEM-EDAX. Rom J Mineral Deposits. 2014;87:105–108.
  • Chernysh Y, Yakhnenko O, Chubur V, et al. Phosphogypsum recycling: a review of environmental issues, current trends, and prospects. Appl Sci. 2021;11:1575. doi:10.3390/app11041575
  • Pliaka M, Gaidajis G. Potential uses of phosphogypsum: a review. J Environ Sci Health A. 2022;57:746–763. doi:10.1080/10934529.2022.2105632
  • Bilal E, Bellefqih H, Bourgier V, et al. Phosphogypsum circular economy considerations: a critical review from more than 65 storage sites worldwide. J Clean Prod. 2021;414:137561. doi:10.1016/j.jclepro.2023.137561
  • U.S. National Research Council. Evaluation of guidelines for exposures to technologically enhanced naturally occurring radioactive materials. Washington (DC): National Academy Press; 1999.
  • Rutherford PM, Dudas MJ, Arocenab JM. Heterogeneous distribution of radionuclides, barium and strontium in phosphogypsum by-product. Sci Total Environ. 1996;180:201–209. doi:10.1016/0048-9697(95)04939-8
  • Davris P, Balomenos E, Taxiarchou M, et al. Current and alternative routes in the production of rare earth elements. Berg Huettenmaenn Monatsh. 2017;162:245–251.
  • Kurkinen S, Virolainen S, Sainio T. Recovery of rare earth elements from phosphogypsum waste in resin-in-leach process by eluting with biodegradable complexing agents. Hydrometallurgy. 2021;201:105569. doi:10.1016/j.hydromet.2021.105569
  • Khomutinin Y, Fesenko S, Levchuk S, et al. Optimising sampling strategies for emergency response: soil sampling. J Environ Radioact. 2020;222:106344. doi:10.1016/j.jenvrad.2020.106344
  • IAEA. Guidelines for radioelement mapping using gamma ray spectrometry data. Vienna: International Atomic Energy Agency; 2003. (IAEA-TECDOC-1363).
  • Appleman DE, Evans HT. Indexing and least-squares refinement of powder diffraction data. computer contribution 20. Washington (DC): U.S. Geological Survey; 1973. (NTIS Doc PB-16188).
  • Benoit PH. Adaptation to microcomputer of the Appleman–Evans program for indexing and least-squares refinement of powder-diffraction data for unit-cell dimensions. Am Mineral. 1987;72:1018–1019.
  • Govindaraju K. Report (1980) on three GIT-IWG rock reference samples: anorthosite from Greenland, AN-G; Basalte d’Essey-la-Côte, BE-N; Granite de Beauvoir, MA-N. Geostand Newslett. 1980;4:49–138. doi:10.1111/j.1751-908X.1980.tb00274.x
  • Shepard D. A two-dimensional interpolation function for irregularly-spaced data. In: Blue Sr RB, Rosenberg AM, editors. Proceedings of the 1968 ACM National Conference. New York (NY): Association for Computing Machinery; 1968. p. 517–524.
  • European Council. Directive 2013/59 – basic safety standards for protection against the dangers arising from exposure to ionising radiation. Available from: https://www.eumonitor.eu/9353000/1/j9vvik7m1c3gyxp/vjs5ga5k9zzr [Accessed 30 April 2024].
  • UNSCEAR. Sources and effects of ionizing radiation. UNSCEAR 2008 report to the general assembly with scientific annexes. Vol. I, Annex B: exposure of the public and workers from various sources of radiation. New York (NY): United Nations Scientific Committee on the Effects of Atomic Radiation; 2010.
  • Bituh T, Petrinec B, Skoko B, et al. Phosphogypsum and its potential use in Croatia: challenges and opportunities. Arh Hig Rada Toksikol. 2021;72:93–100.
  • Papastefanou C, Stoulos S, Ioannidou A, et al. The application of phosphogypsum in agriculture and the radiological impact. J Environ Radioact. 2006;89:188–198. doi:10.1016/j.jenvrad.2006.05.005
  • Papageorgiou F, Godelitsas A, Xanthos S, et al. Characterization of phosphogypsum deposited in Schistos remediated waste site (Piraeus, Greece). In: Merkel B, Arab A, editors. Uranium – past and future challenges. Cham: Springer; 2015. p. 271–280.
  • Janchev M, Boev I, Stiojanovska Z, et al. Evaluation of radioactivity in the phosphogypsum stockpile of “HIV” Veles, Republic of North Macedonia. Contemp Mater. 2020;11:27–32. doi:10.7251/COMEN2001027J
  • Kuzmanovici P, Todorovica N, Forkapica S, et al. Radiological characterization of phosphogypsum produced in Serbia. Rad Phys Chem. 2020;166:108463. doi:10.1016/j.radphyschem.2019.108463
  • Mas JL, Miguel S, Bolívar EG, et al. An assay on the effect of preliminary restoration tasks applied to a large TENORM wastes disposal in the south-west of Spain. Sci Total Environ. 2006;364:55–66. doi:10.1016/j.scitotenv.2005.11.006
  • Madruga MJ, Prudencio MI, Gil JA. Distribution of natural radionuclides, rare earth elements, metals and metalloids in a phosphogypsum stockpile. Int J Waste Resour. 2019;9:1.
  • Fukuma HT, Fernandes EAN, Quinelato AL. Distribution of natural radionuclides during the processing of phosphate rock from Itataia-Brazil for production of phosphoric acid and uranium concentrate. Radiochim Acta. 2000;88:809–812. doi:10.1524/ract.2000.88.9-11.809
  • Luther SM, Dudas MJ, Rutherford PM. Radioactivity and chemical characteristics of Alberta phosphogypsum. Water Air Soil Pollut. 1993;69:277–290. doi:10.1007/BF00478164
  • Li X, Lv X, Xiang L. Review of the state of impurity occurrences and impurity removal technology in phosphogypsum. Materials. 2023;16:5630. doi:10.3390/ma16165630
  • El Afifi EM, Hilal MA, Attallah MF, et al. Characterization of phosphogypsum wastes associated with phosphoric acid and fertilizers production. J Environ Radioact. 2009;100:407–412. doi:10.1016/j.jenvrad.2009.01.005
  • Zielinski RA, Al-Hwaiti MS, Budahn J, et al. Radionuclides, trace elements, and radium residence in phosphogypsum of Jordan. Environ Geochem Health. 2011;33:149–165. doi:10.1007/s10653-010-9328-4
  • Rutherford PM, Dudas MJ, Arocena JM. Radioactivity and elemental composition of phosphogypsum produced from three phosphate rock sources. Waste Manag Res. 1995;13:407–423. doi:10.1177/0734242X9501300502
  • Farrance I, Frenkel R. Uncertainty of measurement: a review of the rules for calculating uncertainty components through functional relationships. Clin Biochem Rev. 2012;33:49–75.
  • Beretka J, Matthew PJ. Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys. 1985;48:87–95. doi:10.1097/00004032-198501000-00007
  • NEA-OECD. Exposure to radiation from natural radioactivity in building materials. Report by an NEA group of experts. Paris: OECD Nuclear Energy Agency; 1979.
  • Turhan S. Radioactivity levels of limestone and gypsum used as building raw materials in Turkey and estimation of exposure doses. Radiat Prot Dosimetry. 2010;140:402–407. doi:10.1093/rpd/ncq132
  • de Jong P, van Dijk W, van der Graaf ER, et al. National survey on the natural radioactivity and 222Rn exhalation rate of building materials in The Netherlands. Health Phys 2006;91:200–210. doi:10.1097/01.HP.0000205238.17466.1c
  • Todorović N, Bikit I, Krmar M, et al. Assessment of radiological significance of building materials and residues. Rom J Phys. 2017;62:817.
  • European Commission. Radiological protection principles concerning the natural radioactivity of building materials. Luxembourg: Directorate-General for Environment; 1999. (Radiation Protection; 112).
  • Pedersen BF, Semmingsen D. Neutron diffraction refinement of the structure of gypsum, CaSO4·2H2O. Acta Crystallogr B. 1982;38:1074–1077. doi:10.1107/S0567740882004993
  • Cole WF, Lancucki CJ. A refinement of the crystal structure of gypsum CaSO4·2H2O. Acta Crystallogr B. 1974;30:921–929. doi:10.1107/S0567740874004055
  • Curry NA, Jones DW. Crystal structure of brushite, calcium hydrogen orthophosphate dihydrate: a neutron-diffraction investigation. J Chem Soc A. 1971;1971:3725–3729. doi:10.1039/j19710003725
  • Baynham JW, Raistrick B. Structural and X-ray data on chemical compounds found in fertilizers. In: Sauchelli V, editor. Chemistry and technology of fertilizers. New York, NY: Reynhold; 1960. p. 538–575.
  • Bachiorrini A, Sassi F. Phosphogypsums study by infra-red spectroscopy. Il cemento. 1974;4:177–184.
  • Rutherford PM, Dudas MJ, Samek R. Environmental impacts of phosphogypsum. Sci Total Environ. 1994;149:1–38. doi:10.1016/0048-9697(94)90002-7
  • Costa C, Fortes A, Rocha F, et al. Characterization of Portuguese gypsum as raw materials for dermocosmetics. Clay Min. 2019;54:277–281. doi:10.1180/clm.2019.36
  • Khudhair MHR, El Youbi MS, Essamri A, et al. Characterization and formulation of a new eco-friendly hydraulic binder based on combination of inorganic and organic admixtures. MATEC Web Conf. 2018;149:01069. doi:10.1051/matecconf/201814901069
  • Kouloheris AP. Chemical nature of phosphogypsum as produced by various wet phosphoric acid processes. Proceedings of the International Symposium on Phosphogypsum; 1980; Lake Buena Vista, FL. p. 9–33. (FIPR Pub No 01-001-017).
  • Ashikuzzaman M, Tarif Uddin A, Zahidul A, et al. Effect of brick forming load on mechanical properties of fly-ash bricks. Trends Civ Eng Architect. 2018;3:TCEIAMSID000157.
  • Rudnick RL, Gao S. Composition of the continental crust. In: Holland HD, Turekian KK, editor. Treatise on geochemistry, vol 3. Amsterdam: Elsevier; 2003. p. 1–64.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.