Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 21, 2018 - Issue 10
307
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Mechanistic comparison of current pharmacological treatments and novel phytochemicals to target amyloid peptides in Alzheimer’s and neurodegenerative diseases

ORCID Icon & ORCID Icon

References

  • Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer’s disease. Lancet 2011;377(9770):1019–31. doi: 10.1016/S0140-6736(10)61349-9
  • Shaji KS, Jotheeswaran AT, Girish N, Bharath S, Dias A, Pattabiraman M, et al. Alzheimer’s & Related Disorders Society of India (2010). The Dementia India Report: prevalence, impact, costs and services for Dementia.
  • Bäckman L, Jones S, Berger AK, Laukka EJ, Small BJ. Multiple cognitive deficits during the transition to Alzheimer’s disease. J Intern Med 2004;256(3):195–204. doi: 10.1111/j.1365-2796.2004.01386.x
  • Braak H, Thal DR, Ghebremedhin E, Del Tredici K. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropath Exp Neur 2011 Nov 1;70(11):960–9. doi: 10.1097/NEN.0b013e318232a379
  • Brion JP. Neurofibrillary tangles and Alzheimer’s disease. Eur Neurol 1998; 40:130–40. doi: 10.1159/000007969
  • Rapp MA, Schnaider-Beeri M, Grossman HT, Sano M, Perl DP, Purohit DP, et al. Increased hippocampal plaques and tangles in patients with Alzheimer disease with a lifetime history of major depression. Arch Gen Psychiatry 2006;63(2):161–7. doi: 10.1001/archpsyc.63.2.161
  • Zetterberg H, Blennow K, Hanse E. Amyloid beta and APP as biomarkers for Alzheimer’s disease. Exp Gerontol 2010;45(1):23–9. doi: 10.1016/j.exger.2009.08.002
  • Hardy J, Allsop D. Amyloid deposition as the central event in the etiology of Alzheimer’s disease. Trends Pharmacol Sci 1991;12(10):383–8 doi: 10.1016/0165-6147(91)90609-V
  • Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002;297(5580):353–6. doi: 10.1126/science.1072994
  • Eckman CB, Eckman EA. An update on the amyloid hypothesis. Neurol Clin 2007;25(3):669–82. doi: 10.1016/j.ncl.2007.03.007
  • Robinson SR, Bishop GM. A as a bioflocculant: implications for the amyloid hypothesis of Alzheimer's disease. Neurobiol Aging 2002;23:1051–72. doi: 10.1016/S0197-4580(01)00342-6
  • Demuro A, Mina E, Kayed R, Milton SC, Parker I, Glabe CG. Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem 2005;280(17):17294–300. doi: 10.1074/jbc.M500997200
  • Inoue S. In situ Amyloid beta pores in AD brain are cylindrical assembly of a beta protofilaments. Amyloid 2008;15(4):223–33. doi: 10.1080/13506120802524858
  • Kayed R, Pensalfini A, Margol L, Sokolov Y, Sarsoza F, Head E, et al. Annular protofibrils are a structurally and functionally distinct type of amyloid oligomer. J Biol Chem 2009;284(7):4230–7. doi: 10.1074/jbc.M808591200
  • Kokubo H, Kayed R, Glabe CG, Staufenbiel M, Saido TC, Iwata N, et al. Amyloid Beta annular proto fibrils in cell processes and synapses accumulate with aging and Alzheimer-associated genetic modification. Int J Alzheimer’s Dis 2009;2009(2009):1–7. doi:10.4061/2009/689285.
  • Abramov AY, Canevari L, Duchen MR. β-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J Neurosci 2004 Jan 14;24(2):565–75. doi: 10.1523/JNEUROSCI.4042-03.2004
  • Petersen RB, Nunomura A, Lee H, Casadesus G, Perry G, Smith MA, et al. Signal transduction cascades associated with oxidative stress in Alzheimer’s disease. J Alzheimers Dis 2007;11(2):143–52. doi: 10.3233/JAD-2007-11202
  • Hensley K, Aksenova M, Carney JM, Harris M, Butterfield DA. Amyloid [beta]-peptide spin trapping II: evidence for decomposition of the PBN spin adduct. NeuroReport 1995;6(3):493–6. doi: 10.1097/00001756-199502000-00022
  • Reddy PH, Beal MF. Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol Med 2008;14(2):45–53. doi: 10.1016/j.molmed.2007.12.002
  • Peng Q, Buz’Zard AR, Lau BH. Neuroprotective effect of garlic compounds in amyloid-β peptide-induced apoptosis in vitro. Med Sci Monit 2002 Aug 7;8(8):BR328–37.
  • González-Gross M, Marcos A, Pietrzik K. Nutrition and cognitive impairment in the elderly. Br J Nutr 2001 Sep 1;86(03):313–21. doi: 10.1079/BJN2001388
  • Findeis MA. The role of amyloid β peptide 42 in Alzheimer's disease. Pharmacol Therapeut 2007 Nov 30;116(2):266–86. doi: 10.1016/j.pharmthera.2007.06.006
  • Dickson DW, Farlo J, Davies P, Crystal H, Fuld P, Yen SH. Alzheimer’s disease. a double-labeling immunohistochemical study of senile plaques. Am J Pathol 1988 Jul;132(1):86–101.
  • Combs CK, Karlo JC, Kao SC, Landreth GE. β-Amyloid stimulation of microglia and monocytes results in TNFα-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J Neurosci 2001 Feb 15;21(4):1179–88.
  • Rubio-Perez JM, Morillas-Ruiz JM. A review: inflammatory process in Alzheimer’s disease, role of cytokines. Sci World J 2012 Apr 1;2012: 1–15, Article ID:756357. doi: 10.1100/2012/756357
  • Buggia-Prevot V, Sevalle J, Rossner S, Checler FR. NFκB-dependent control of BACE1 promoter transactivation by Aβ42. J Biol Chem 2008;283(15):10037–47. doi: 10.1074/jbc.M706579200
  • Zhao L, Hou L, Sun H, Yan X, Sun X, Li J, et al. Apigenin isolated from the medicinal plant Elsholtzia rugulosa prevents β-amyloid 25–35-induces toxicity in rat cerebral microvascular endothelial cells. Molecules 2011 May 13;16(5):4005–19. doi: 10.3390/molecules16054005
  • Iuvone T, De Filippis D, Esposito G, D’Amico A, Izzo AA. The spice sage and its active ingredient rosmarinic acid protect PC12 cells from amyloid-β peptide-induced neurotoxicity. J Pharmacol Exp Ther 2006 Jun 1;317(3):1143–9. doi: 10.1124/jpet.105.099317
  • Parvathy S, Rajadas J, Ryan H, Vaziri S, Anderson L, Murphy GM. Aβ peptide conformation determines uptake and interleukin-1α expression by primary microglial cells. Neurobiol Aging 2009 Nov 30;30(11):1792–804. doi: 10.1016/j.neurobiolaging.2008.01.011
  • O’Barr S, Cooper NR. The C5a complement activation peptide increases IL-1β and IL-6 release from amyloid-β primed human monocytes: implications for Alzheimer’s disease. J Neuroimmunol 2000 Sep 22;109(2):87–94. doi: 10.1016/S0165-5728(00)00291-5
  • Veerhuis R, Van Breemen MJ, Hoozemans JJ, Morbin M, Ouladhadj J, Tagliavini F, et al. Amyloid β plaque-associated proteins C1q and SAP enhance the Aβ1-42 peptide-induced cytokine secretion by adult human microglia in vitro. Acta Neuropathol 2003;105(2):135–44.
  • Bachstetter AD, Xing B, de Almeida L, Dimayuga ER, Watterson DM, Van Eldik LJ. Microglial p38α MAPK is a key regulator of proinflammatory cytokine up-regulation induced by toll-like receptor (TLR) ligands or beta-amyloid (Aβ). J Neuroinflamm 2011;8(1):79. doi: 10.1186/1742-2094-8-79
  • Passos GF, Figueiredo CP, Prediger RD, Pandolfo P, Duarte FS, Medeiros R, et al. Role of the macrophage inflammatory protein-1α/CC chemokine receptor 5 signaling pathway in the neuroinflammatory response and cognitive deficits induced by β-amyloid peptide. Am J Pathol 2009;175(4):1586–97. doi: 10.2353/ajpath.2009.081113
  • Patel NS, Paris D, Mathura V, Quadros AN, Crawford FC, Mullan MJ. Inflammatory cytokine levels correlate with amyloid load in transgenic mouse models of Alzheimer’s disease. J Neuroinflamm 2005;2(1):9. doi: 10.1186/1742-2094-2-9
  • Aisen PS. The potential of anti-inflammatory drugs for the treatment of Alzheimer’s disease. Lancet Neurol 2002 Sep;1(5):279–84. doi: 10.1016/S1474-4422(02)00133-3
  • Lee JW, Lee YK, Ban JO, Ha TY, Yun YP, Han SB, et al. Green tea -epigallocatechin-3-gallate inhibits β-amyloid-induced cognitive dysfunction through modification of secretase activity via inhibition of ERK and NF-κB pathways in mice. J Nutr 2009 Oct 1;139(10):1987–93. doi: 10.3945/jn.109.109785
  • Lee SY, Lee JW, Lee H, Yoo HS, Yun YP, Oh KW, et al. Inhibitory effect of green tea extract on β-amyloid-induced PC12 cell death by inhibition of the activation of NF-κB and ERK/p38 MAP kinase pathway through antioxidant mechanisms. Mol Brain Res 2005 Oct 31;140(1):45–54. doi: 10.1016/j.molbrainres.2005.07.009
  • Ahmed S, Rahman A, Hasnain A, Lalonde M, Goldberg VM, Haqqi TM. Green tea polyphenol epigallocatechin-3-gallate inhibits the IL-1β-induced activity and expression of cyclooxygenase-2 and nitric oxide synthase-2 in human chondrocytes. Free Radical Bio Med 2002 Oct 15;33(8):1097–105. doi: 10.1016/S0891-5849(02)01004-3
  • Singh S, Aggarwal BB. Activation of transcription factor NF-κB is suppressed by curcumin (diferuloylmethane). J Biol Chem 1995 Oct 20;270(42):2499–5000. doi: 10.1074/jbc.270.42.24995
  • Sandur SK, Ichikawa H, Pandey MK, Kunnumakkara AB, Sung B, Sethi G, et al. Role of pro-oxidants and antioxidants in the anti-inflammatory and apoptotic effects of curcumin (diferuloylmethane). Free Radical Bio Med 2007 Aug 15;43(4):568–80. doi: 10.1016/j.freeradbiomed.2007.05.009
  • Shishodia S, Singh T, Chaturvedi MM. Modulation of transcription factors by curcumin. In: Agarwal BB, Surh YJ, Shishodia S, (eds.) The molecular targets and therapeutic uses of curcumin in health and disease. Volume 595. New York: Springer; 2007. p. 127–48.
  • Baum L, Lam CW, Cheung SK, Kwok T, Lui V, Tsoh J, et al. Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J Clin Psychopharm 2008 Feb 1;28(1):110–3. doi: 10.1097/jcp.0b013e318160862c
  • Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, van Eersel J, et al. Dendritic function of tau mediates amyloid-β toxicity in Alzheimer's disease mouse models. Cell 2010 Aug 6;142(3):387–97. doi: 10.1016/j.cell.2010.06.036
  • Lamprecht R, LeDoux J. Structural plasticity and memory. Nat Rev Neurosci 2004 Jan 1 5(1):45–54. doi: 10.1038/nrn1301
  • Roselli F, Tirard M, Lu J, Hutzler P, Lamberti P, Livrea P, et al. Soluble β-amyloid1-40 induces NMDA-dependent degradation of postsynaptic density-95 at glutamatergic synapses. J Neurosci 2005 Nov 30;25(48):11061–70. doi: 10.1523/JNEUROSCI.3034-05.2005
  • Roselli F, Hutzler P, Wegerich Y, Livrea P, Almeida OF. Disassembly of shank and homer synaptic clusters is driven by soluble β-amyloid 1-40 through divergent NMDAR-dependent signalling pathways. PLoS ONE 2009 Jun 23;4(6):e6011. doi: 10.1371/journal.pone.0006011
  • Thomas SJ, Grossberg GT. Memantine: a review of studies into its safety and efficacy in treating Alzheimer’s disease and other dementias. Clin Interv Aging 2009 Jan 1;4:367–77.
  • Tariot PN, Farlow MR, Grossber GT, Graham SM, McDonald S, Gergel I for the Memantine Study Group. Memantine treatment in patients with moderate to severe Alzheimer's disease already receiving donepezil: a randomized, controlled trial. JAMA 2004;291:317–24. doi: 10.1001/jama.291.3.317
  • Drever BD, Riedel G, Platt B. The cholinergic system and hippocampal plasticity. Behav Brain Res 2011 Aug 10;221(2):505–14. doi: 10.1016/j.bbr.2010.11.037
  • Blokland A. Acetylcholine: a neurotransmitter for learning and memory? Brain Res Rev 1995 Nov 30;21(3):285–300. doi: 10.1016/0165-0173(95)00016-X
  • Shimohama S. Apoptosis in Alzheimer’s disease – an update. Apoptosis 2000;5(1):9–16. doi: 10.1023/A:1009625323388
  • Zhao H, Yenari MA, Cheng D, Sapolsky RM, Steinberg GK. Bcl-2 overexpression protects against neuron loss within the ischemic margin following experimental stroke and inhibits cytochrome c translocation and caspase-3 activity. J Neurochem 2003;85(4):1026–36. doi: 10.1046/j.1471-4159.2003.01756.x
  • Donovan M, Cotter TG. Control of mitochondrial integrity by Bcl-2 family members and caspase-independent cell death. BBA-Mol Cell Res 2004;1644(2):133–47.
  • Bastianetto S, Yao ZX, Papadopoulos V, Quirion R. Neuroprotective effects of green and black teas and their catechin gallate esters against β-amyloid-induced toxicity. Eur J Neurosci 2006 Jan 1;23(1):55–64. doi: 10.1111/j.1460-9568.2005.04532.x
  • Yu HL, Li L, Zhang XH, Xiang L, Zhang J, Feng JF, et al. Neuroprotective effects of genistein and folic acid on apoptosis of rat cultured cortical neurons induced by β-amyloid 31–35. Br J Nutr 2009 Sep 1;102(05):655–62. doi: 10.1017/S0007114509243042
  • Rudy CC, Hunsberger HC, Weitzner DS, Reed MN. The role of the tripartite glutamatergic synapse in the pathophysiology of Alzheimer’s disease. Aging dis 2015 Mar;6(2):131. doi: 10.14336/AD.2014.0423
  • Roberson ED, Halabisky B, Yoo JW, Yao J, Chin J, Yan F, et al. Amyloid-β/Fyn–induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer’s disease. J Neurosci 2011 Jan 12;31(2):700–11. doi: 10.1523/JNEUROSCI.4152-10.2011
  • Hasselmo ME. Neuromodulation: acetylcholine and memory consolidation. Trends Cogn Sci 1999 Sep 1;3(9):351–9. doi: 10.1016/S1364-6613(99)01365-0
  • Lin L, Georgievska B, Mattsson A, Isacson O. Cognitive changes and modified processing of amyloid precursor protein in the cortical and hippocampal system after cholinergic synapse loss and muscarinic receptor activation. Proc Natl Acad Sci USA 1999;96(21):12108–13. doi: 10.1073/pnas.96.21.12108
  • Kar S, Seto D, Gaudreau P, Quirion R. Beta-amyloid-related peptides inhibit potassium-evoked acetylcholine release from rat hippocampal slices. J Neurosci 1996 Feb 1;16(3):1034–40.
  • Yun SH, Gamkrelidze G, Stine WB, et al. Amyloid-beta1-42 reduces neuronal excitability in mouse dentate gyrus. Neurosci Lett 2006;403(0):162–5. doi: 10.1016/j.neulet.2006.04.065
  • Kar S, Slowikowski SP, Westaway D, Mount HT. Interactions between [beta]-amyloid and central cholinergic neurons: implications for Alzheimer’s disease. J Psychiatr Neurosci 2004 Nov 1;29(6):427.
  • Takada Y, Yonezawa A, Kume T, Katsuki H, Kaneko S, Sugimoto H, et al. Nicotinic acetylcholine receptor-mediated neuroprotection by donepezil against glutamate neurotoxicity in rat cortical neurons. J Pharmacol Exp Ther 2003;306(2):772–7. doi: 10.1124/jpet.103.050104
  • Winblad B, Kilander L, Eriksson S, Minthon L, Båtsman S, Wetterholm AL, et al. Severe Alzheimer’s disease study group. Donepezil in patients with severe Alzheimer’s disease: double-blind, parallel-group, placebo-controlled study. Lancet 2006;367(9516):1057–65. doi: 10.1016/S0140-6736(06)68350-5
  • Matthews HP, Korbey J, Wilkinson DG, Rowden J. Donepezil in Alzheimer’s disease: eighteen month results from Southampton Memory Clinic. Int J Geriatr Psychiatry 2000 Aug 1;15(8):713–20. doi: 10.1002/1099-1166(200008)15:8<713::AID-GPS187>3.0.CO;2-I
  • Gauthier S, Feldman H, Hecker J, Vellas B, Emir B, Subbiah P. Functional, cognitive and behavioral effects of donepezil in patients with moderate Alzheimer's disease. Curr Med Res Opin 2002 Jan 1;18(6):347–54. doi: 10.1185/030079902125001029
  • Holmes C, Wilkinson D, Dean C, Vethanayagam S, Olivieri S, Langley A, et al. The efficacy of donepezil in the treatment of neuropsychiatric symptoms in Alzheimer disease. Neurology 2004 Jul 27;63(2):214–9. doi: 10.1212/01.WNL.0000129990.32253.7B
  • Masuda Y, Kawamura A. Acetylcholinesterase inhibitor (donepezil hydrochloride) reduces heart rate variability. J Cardiovasc Pharm 2003 Jan 1;41:S67–71.
  • McLaren AT, Allen J, Murray A, Ballard CG, Kenny RA. Cardiovascular effects of donepezil in patients with dementia. Dement Geriatr Cogn 2003 Mar 19;15(4):183–8. doi: 10.1159/000068781
  • Borroni B, Pettenati C, Bordonali T, Akkawi N, Di Luca M, Padovani A. Serum cholesterol levels modulate long-term efficacy of cholinesterase inhibitors in Alzheimer disease. Neurosci Lett 2003 Jun 12;343(3):213–5. doi: 10.1016/S0304-3940(03)00336-7
  • Adunsky A, Chesnin V, Ravona R, Harats D, Davidson M. Plasma lipid levels in Alzheimer’s disease patients treated by Donepezil hydrochloride: a cross-sectional study. Arch Gerontol Geriat 2004 Feb 29;38(1):61–8. doi: 10.1016/j.archger.2003.08.002
  • Bryson HM, Benfield P. Donepezil. Drugs Aging 1997;10:234–9. doi: 10.2165/00002512-199710030-00007
  • Miyaoka T, Seno H, Yamamori C, Inagaki T, Itoga M, Horiguchi J. Pisa syndrome due to a cholinesterase inhibitor (donepezil): a case report. J Clin Psychiatry 2001 Jul 1;62(7):573–4. doi: 10.4088/JCP.v62n07d13
  • Kwak YT, Han IW, Baik J, Koo MS. Relation between cholinesterase inhibitor and Pisa syndrome. Lancet 2000 Jun 24;355(9222):2222. doi: 10.1016/S0140-6736(00)02412-0
  • Desai AK, Grossberg GT. Rivastigmine for Alzheimer’s disease. Expert Rev Neurother 2005 Sep 1;5(5):563–80. doi: 10.1586/14737175.5.5.563
  • Cummings JL. Use of cholinesterase inhibitors in clinical practice: evidence-based recommendations. Am J Geriat Psychiat 2003 Apr 30;11(2):131–45. doi: 10.1097/00019442-200303000-00004
  • Maelicke A, Albuquerque EX. Allosteric modulation of nicotinic acetylcholine receptors as a treatment strategy for Alzheimer's disease. Eur J Pharmacol 2000 Mar 30;393(1):165–70. doi: 10.1016/S0014-2999(00)00093-5
  • Jann MW, Shirley KL, Small GW. Clinical pharmacokinetics and pharmacodynamics of cholinesterase inhibitors. Clin Pharmacokinet 2002 Aug 1;41(10):719–39. doi: 10.2165/00003088-200241100-00003
  • Arias E, Alés E, Gabilan NH, Cano-Abad MF, Villarroya M, García AG, et al. Galantamine prevents apoptosis induced by β-amyloid and thapsigargin: involvement of nicotinic acetylcholine receptors. Neuropharmacology 2004 Jan 31;46(1):103–14. doi: 10.1016/S0028-3908(03)00317-4
  • Darvesh S, Walsh R, Kumar R, Caines A, Roberts S, Magee D, et al. Inhibition of human cholinesterases by drugs used to treat Alzheimer disease. Alzheimer Dis Assoc Dis 2003 Apr 1;17(2):117–26. doi: 10.1097/00002093-200304000-00011
  • Samochocki M, Höffle A, Fehrenbacher A, Jostock R, Ludwig J, Christner C, et al. Galantamine is an allosterically potentiating ligand of neuronal nicotinic but not of muscarinic acetylcholine receptors. J Pharmacol Exp Ther 2003 Jun 1;305(3):1024–36. doi: 10.1124/jpet.102.045773
  • Tariot PN, Solomon PR, Morris JC, Kershaw P, Lilienfeld S, Ding C. Galantamine USA-Study Group. A 5-month, randomized, placebo-controlled trial of galantamine in AD. Neurology 2000 Jun 27;54(12):2269–76. doi: 10.1212/WNL.54.12.2269
  • Chen HS, Pellegrini JW, Aggarwal SK, Lei SZ, Warach S, Jensen FE, et al. Open-channel block of N-methyl-D-aspartate (NMDA) responses by memantine: therapeutic advantage against NMDA receptor-mediated neurotoxicity. J Neurosci 1992;12(11):4427–36.
  • Seeman P, Caruso C, Lasaga M. Memantine agonist action at dopamine D2High receptors. Synapse 2008;62(2):149–53. doi: 10.1002/syn.20472
  • Witt A, Macdonald N, Kirkpatrick P. Memantine hydrochloride. Nat Rev Drug Discov 2004;3(2):109–10. doi: 10.1038/nrd1311
  • Peeters M, Romieu P, Maurice T, Su TP, Maloteaux JM, Hermans E. Involvement of the sigma1 receptor in the modulation of dopaminergic transmission by amantadine. Eur J Neurosci 2004;19(8):2212–20. doi: 10.1111/j.0953-816X.2004.03297.x
  • Villoslada P, Arrondo G, Sepulcre J, Alegre M, Artieda J. Memantine induces reversible neurologic impairment in patients with MS. Neurology 2009;72(19):1630–3. doi: 10.1212/01.wnl.0000342388.73185.80
  • Rogawski MA, Wenk GL. The neuropharmacological basis for the use of memantine in the treatment of Alzheimer’s disease. CNS Drug Rev 2003 Sep 1;9(3):275–308. doi: 10.1111/j.1527-3458.2003.tb00254.x
  • Bhagwat S, Haytowitz DB, Holden JM. USDA Database for the Flavonoid Content of Selected Foods Release 3 Prepared by USDA Database for the Flavonoid Content of Selected Foods Release 3 Prepared by. US Dep Argiculture 2011;1–156.
  • Lee MJ, Maliakal P, Chen L, Meng X, Bondoc FY, Prabhu S, et al. Pharmacokinetics of tea catechins after ingestion of green tea and (−)-epigallocatechin-3-gallate by humans. Cancer Epidemiol Prevent Biomarkers 2002 Oct 1;11(10):1025–32.
  • Stalmach A, Troufflard S, Serafini M, Crozier A. Absorption, metabolism and excretion of Choladi green tea flavan-3-ols by humans. Mol Nutr Food Res 2009;53:S44–53. doi: 10.1002/mnfr.200800169
  • Roowi S, Stalmach A, Mullen W, Lean ME, Edwards CA, Crozier A. Green tea flavan-3-ols: Colonic degradation and urinary excretion of catabolites by humans. J Agric Food Chem 2010;58:1296–304. doi: 10.1021/jf9032975
  • Schroeder EK, Kelsey NA, Doyle J, Breed E, Bouchard RJ, Loucks FA, et al. Green tea epigallocatechin 3-gallate accumulates in mitochondria and displays a selective antiapoptotic effect against inducers of mitochondrial oxidative stress in neurons. Antioxid Redox Sign 2009 Mar 1;11(3):469–80. doi: 10.1089/ars.2008.2215
  • Ortiz-López L, Márquez-Valadez B, Gómez-Sánchez A, Silva-Lucero MD, Torres-Pérez M, Téllez-Ballesteros RI, et al. Green tea compound epigallo-catechin-3-gallate (EGCG) increases neuronal survival in adult hippocampal neurogenesis in vivo and in vitro. Neuroscience 2016;322:208–20. doi: 10.1016/j.neuroscience.2016.02.040
  • Mandel S, Reznichenko L, Amit T, Youdim MB. Green tea polyphenol (−)-epigallocatechin-3-gallate protects rat PC12 cells from apoptosis induced by serum withdrawal. Neurotox Res 2003 Jan 1;5(6):419–24. doi: 10.1007/BF03033171
  • Avramovich-Tirosh Y, Reznichenko L, Mit T, Zheng H, Fridkin M, Weinreb O, et al. Neurorescue activity, APP regulation and amyloid-beta peptide reduction by novel multi-functional brain permeable iron- chelating-antioxidants, M-30 and green tea polyphenol, EGCG. Curr Alzheimer Res 2007;4(4):403–11. doi: 10.2174/156720507781788927
  • Bieschke J, Russ J, Friedrich RP, Ehrnhoefer DE, Wobst H, Neugebauer K, et al. EGCG remodels mature alpha-synuclein and amyloid-beta fibrils and reduces cellular toxicity. Proc Natl Acad Sci USA 2010;107(17):7710–5. doi: 10.1073/pnas.0910723107
  • Attar A, Rahimi F, Bitan G. Modulators of amyloid protein aggregation and toxicity: EGCG and CLR01. Transl Neurosci 2013;4(4):385–409. doi: 10.2478/s13380-013-0137-y
  • Pae M, Ren Z, Meydani M, Shang F, Smith D, Meydani SN, et al. Dietary supplementation with high dose of epigallocatechin-3-gallate promotes inflammatory response in mice. J Nutr Biochem 2012 Jun 30;23(6):526–31. doi: 10.1016/j.jnutbio.2011.02.006
  • He Y, Cui J, Lee JC, Ding S, Chalimoniuk M, Simonyi A, et al. Prolonged exposure of cortical neurons to oligomeric amyloid-β impairs NMDA receptor function via NADPH oxidase-mediated ROS production: protective effect of green tea (–)-epigallocatechin-3-gallate. ASN Neuro 2011 Jan 13;3(1):AN20100025. doi: 10.1042/AN20100025
  • Kim SJ, Jeong HJ, Lee KM, Myung NY, An NH, Yang WM, et al. Epigallocatechin-3-gallate suppresses NF-κB activation and phosphorylation of p38 MAPK and JNK in human astrocytoma U373MG cells. J Nutr Biochem 2007 Sep 30;18(9):587–96. doi: 10.1016/j.jnutbio.2006.11.001
  • Chow HS, Cai Y, Hakim IA, Crowell JA, Shahi F, Brooks CA, et al. Pharmacokinetics and safety of green tea polyphenols after multiple-dose administration of epigallocatechin gallate and polyphenon E in healthy individuals. Clin Cancer Res 2003 Aug 15;9(9):3312–9.
  • Kelly GS. Quercetin. Altern Med Rev 2011 Jun 1;16(2):172–94.
  • Olthof MR, Hollman PC, Vree TB, Katan MB. Bioavailabilities of quercetin-3-glucoside and quercetin-4′-glucoside do not differ in humans. J Nutr 2000 May 1;130(5):1200–3. doi: 10.1093/jn/130.5.1200
  • Ansari MA, Abdul HM, Joshi G, Opii WO, Butterfield DA. Protective effect of quercetin in primary neurons against Abeta(1–42): relevance to Alzheimer’s disease. J Nutr Biochem 2009;20(4):269–75. doi: 10.1016/j.jnutbio.2008.03.002
  • Li Y, Zhou S, Li J, Sun Y, Hasimu H, Liu R, et al. Quercetin protects human brain microvascular endothelial cells from fibrillar β-amyloid 1-40-induced toxicity. Acta Pharmaceut Sin B 2015 Jan 31;5(1):47–54. doi: 10.1016/j.apsb.2014.12.003
  • Jiménez-Aliaga K, Bermejo-Bescós P, Benedí J, Martín-Aragón S. Quercetin and rutin exhibit antiamyloidogenic and fibril-disaggregating effects in vitro and potent antioxidant activity in APPswe cells. Life Sci 2011 Dec 19;89(25):939–45. doi: 10.1016/j.lfs.2011.09.023
  • Tchantchou F, Lacor PN, Cao Z, Lao L, Hou Y, Cui C, et al. Stimulation of neurogenesis and synaptogenesis by bilobalide and quercetin via common final pathway in hippocampal neurons. J Alzheimer’s Dis 2009 Jan 1;18(4):787–98. doi: 10.3233/JAD-2009-1189
  • Ossola B, Kääriäinen TM, Männistö PT. The multiple faces of quercetin in neuroprotection. Expert Opin Drug Saf 2009 Jul 1;8(4):397–409. doi: 10.1517/14740330903026944
  • Mullin, G.E. Red wine, grapes, and better health – resveratrol. Nutr Clin Pract 2011;26(6):722–3. doi: 10.1177/0884533611423927
  • Walle T, Hsieh F, DeLegge MH, Oatis JE, Walle UK. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab Dispos: Biol Fate Chem 2004;32(12):1377–82. doi: 10.1124/dmd.104.000885
  • Almeida L, Vaz-da-Silva M, Falcão A, Soares E, Costa R, Loureiro AI, et al. Pharmacokinetic and safety profile of trans-resveratrol in a rising multiple-dose study in healthy volunteers. Mol Nutr Food Res 2009 May 1;53(S1):S7–15. doi: 10.1002/mnfr.200800177
  • Han Y-S, Zheng W-H, Bastianetto S, Chabot J-G, Quirion R. Neuroprotective effects of resveratrol against beta-amyloid-induced neurotoxicity in rat hippocampal neurons: involvement of protein kinase C. Br J Pharmacol 2004;141(6):997–1005. doi: 10.1038/sj.bjp.0705688
  • Jang JH, Surh YJ. Protective effect of resveratrol on beta-amyloid-induced oxidative PC12 cell death. Free Radic Biol Med 2003;34(8):1100–10. doi: 10.1016/S0891-5849(03)00062-5
  • Chen J, Zhou Y, Mueller-Steiner S, Chen LF, Kwon H, Yi S, et al. SIRT1 protects against microglia-dependent amyloid-β toxicity through inhibiting NF-κB signaling. J Biol Chem 2005;280(48):40364–74. doi: 10.1074/jbc.M509329200
  • Kim YA, Lim S-Y, Rhee S-H, Park KY, Kim C-H, Choi BT, et al. Resveratrol inhibits inducible nitric oxide synthase and cyclooxygenase-2 expression in beta-amyloid-treated C6 glioma cells. Int J Mol Med 2006;17(6):1069–75.
  • Luo L, Huang YM. Effect of resveratrol on the cognitive ability of Alzheimeros mice. Zhong nan da xue bao. Yi xue ban = Journal of Central South University. Med Sci 2006 Aug;31(4):566–9.
  • Sharma RA, Steward WP, Gescher AJ. Pharmacokinetics and pharmacodynamics of curcumin. The molecular targets and therapeutic uses of curcumin in health and disease. Adv Exp Med Biol 2007;595:453–70. doi: 10.1007/978-0-387-46401-5_20
  • Park SY, Kim HS, Cho EK, Kwon BY, Phark S, Hwang KW, et al. Curcumin protected PC12 cells against beta-amyloid-induced toxicity through the inhibition of oxidative damage and tau hyperphosphorylation. Food Chem Toxicol 2008;46(8):2881–7. doi: 10.1016/j.fct.2008.05.030
  • Qin XY, Cheng Y, Cui J, Zhang Y, Yu LC. Potential protection of curcumin against amyloid β-induced toxicity on cultured rat prefrontal cortical neurons. Neurosci Lett 2009;463(2):158–61. doi: 10.1016/j.neulet.2009.07.047
  • Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 2001;21(21):8370–7.
  • Ono K, Hasegawa K, Naiki H, Yamada M. Curcumin has potent anti-amyloidogenic effects for Alzheimer’s β-amyloid fibrils in vitro. J Neurosci Res 2004;75(6):742–50. doi: 10.1002/jnr.20025
  • Shekarchi M, Hajimehdipoor H, Saeidnia S, Gohari AR, Hamedani MP. Comparative study of rosmarinic acid content in some plants of Labiatae family. Pharmacogn Mag 2012 Jan 1;8(29):37. doi: 10.4103/0973-1296.93316
  • Nakazawa T, Ohsawa K. Metabolism of rosmarinic acid in rats. J Nat Prod 1998 Aug 28;61(8):993–6. doi: 10.1021/np980072s
  • Baba S, Osakabe N, Natsume M, Terao J. Orally administered rosmarinic acid is present as the conjugated and/or methylated forms in plasma, and is degraded and metabolized to conjugated forms of caffeic acid, ferulic acid and m-coumaric acid. Life Sci 2004 May 28;75(2):165–78. doi: 10.1016/j.lfs.2003.11.028
  • Airoldi C, Sironi E, Dias C, Marcelo F, Martins A, Rauter AP, et al. Natural compounds against Alzheimer's disease: molecular recognition of Aβ1-42 peptide by Salvia sclareoides extract and its major component, rosmarinic acid, as investigated by NMR. Chem Asian J 2013;8(3):596–602. doi: 10.1002/asia.201201063
  • Bulgakov VP, Inyushkina YV, Fedoreyev SA. Rosmarinic acid and its derivatives: biotechnology and applications. Crit Rev Biotechnol 2012 Sep 1;32(3):203–17. doi: 10.3109/07388551.2011.596804
  • Alkam T, Nitta A, Mizoguchi H, Itoh A, Nabeshima T. A natural scavenger of peroxynitrites, rosmarinic acid, protects against impairment of memory induced by Aβ 25–35. Behav Brain Res 2007 Jun 18;180(2):139–45. doi: 10.1016/j.bbr.2007.03.001
  • Shukla S, Gupta S. Apigenin: a promising molecule for cancer prevention. Pharm Res Dordr 2010 Jun 1;27(6):962–78. doi: 10.1007/s11095-010-0089-7
  • Hollman PC, Katan MB. Health effects and bioavailability of dietary flavonols. Free Radical Res 1999 Jan 1;31(sup1):75–80. doi: 10.1080/10715769900301351
  • Zhang J, Liu D, Huang Y, Gao Y, Qian S. Biopharmaceutics classification and intestinal absorption study of apigenin. Int J Pharmaceut 2012 Oct 15;436(1):311–7. doi: 10.1016/j.ijpharm.2012.07.002
  • Gradolatto A, Canivenc-Lavier MC, Basly JP, Siess MH, Teyssier C. Metabolism of apigenin by rat liver phase I and phase II enzymes and by isolated perfused rat liver. Drug Metab Dispos 2004 Jan 1;32(1):58–65. doi: 10.1124/dmd.32.1.58
  • Liu R, Zhang T, Yang H, Lan X, Ying J, Du G. The flavonoid apigenin protects brain neurovascular coupling against amyloid-β25-35-induced toxicity in mice. J Alzheimers Dis 2011;24(1):85–100.
  • Zhao L, Wang JL, Wang YR, Fa XZ. Apigenin attenuates copper-mediated β-amyloid neurotoxicity through antioxidation, mitochondrion protection and MAPK signal inactivation in an AD cell model. Brain Res 2013;1492:33–45. doi: 10.1016/j.brainres.2012.11.019
  • López-Lázaro M. Distribution and biological activities of the flavonoid luteolin. Mini-Rev Med Chem 2009 Jan 1;9(1):31–59. doi: 10.2174/138955709787001712
  • Shimoi K, Okada H, Furugori M, Goda T, Takase S, Suzuki M, et al. Intestinal absorption of luteolin and luteolin 7-O-β-glucoside in rats and humans. FEBS Lett 1998 Nov 6;438(3):220–4. doi: 10.1016/S0014-5793(98)01304-0
  • Cheng HY, Hsieh MT, Tsai FS, Wu CR, Chiu CS, Lee MM, Xu HX, Zhao ZZ, Peng WH. Neuroprotective effect of luteolin on amyloid beta protein (25-35)-induced toxicity in cultured rat cortical neurons. Phytother Res 2010;24:102–8. doi: 10.1002/ptr.2940
  • Wruck CJ, Claussen M, Fuhrmann G, Römer L, Schulz A, Pufe T, et al. Luteolin protects rat PC 12 and C6 cells against MPP+ induced toxicity via an ERK dependent Keapl-Nrf2-ARE pathway. In: Gerlach M, Deckert J, Double K, Koutsilieri E, (eds.) Neuropsychiatric disorders an integrative approach. Volume 72. Vienna: Springer; 2007. p. 57–67. doi: 10.1007/978-3-211-73574-9_9
  • Liu R, Meng F, Zhang L, Liu A, Qin H, Lan X, et al. Luteolin isolated from the medicinal plant Elsholtzia rugulosa (Labiatae) prevents copper-mediated toxicity in β-amyloid precursor protein Swedish mutation overexpressing SH-SY5Y cells. Molecules 2011;16(3):2084–96. doi: 10.3390/molecules16032084
  • Xu B, Li XX, He GR, Hu JJ, Mu X, Tian S, Du GH. Luteolin promotes long-term potentiation and improves cognitive functions in chronic cerebral hypoperfused rats. Eur J Pharmacol 2010 Feb 10;627(1):99–105. doi: 10.1016/j.ejphar.2009.10.038
  • Rasul A, Millimouno FM, Ali Eltayb W, Ali M, Li J, Li X. Pinocembrin: a novel natural compound with versatile pharmacological and biological activities. BioMed Res Int 2013 Aug 5;2013:1–9, Article ID:379850. doi: 10.1155/2013/379850
  • Guo WW, Qiu F, Chen XQ, Ba YY, Wang X, Wu X. In-vivo absorption of pinocembrin-7-O-β-D-glucoside in rats and its in-vitro biotransformation. Sci Rep 2016;6.
  • Wang Y, Miao Y, Mir AZ, Cheng L, Wang L, Zhao L, et al. Inhibition of beta-amyloid-induced neurotoxicity by pinocembrin through Nrf2/HO-1 pathway in SH-SY5Y cells. J Neurol Sci 2016 Sep 15;368:223–30. doi: 10.1016/j.jns.2016.07.010
  • Liu R, Wu C-X, Zhou D, Yang F, Tian S, Zhang L, et al. Pinocembrin protects against β-amyloid-induced toxicity in neurons through inhibiting receptor for advanced glycation end products (RAGE)-independent signaling pathways and regulating mitochondrion-mediated apoptosis. BMC Med 2012;10:105. doi: 10.1186/1741-7015-10-105
  • Liu R, Li JZ, Song JK, Sun JL, Li YJ, Zhou SB, et al. Pinocembrin protects human brain microvascular endothelial cells against fibrillar amyloid-β(1-40) injury by suppressing the MAPK/NF-κB inflammatory pathways. Biomed Res Int 2014;201:470393.
  • Drago F, Floriddia ML, Cro M, Giuffrida S. Pharmacokinetics and bioavailability of a Ginkgo biloba extract. J Ocul Pharmacol Ther 2002 Apr 1;18(2):197–202. doi: 10.1089/108076802317373941
  • Shi C, Wu F, Xu J, Zou J. Bilobalide regulates soluble amyloid precursor protein release via phosphatidyl inositol 3 kinase-dependent pathway. Neurochem Int 2011 Aug 31;59(1):59–64. doi: 10.1016/j.neuint.2011.03.028
  • Bastianetto S, Ramassamy C, Doré S, Christen Y, Poirier J, Quirion R. The ginkgo biloba extract (EGb 761) protects hippocampal neurons against cell death induced by β-amyloid. Eur J Neurosci 2000 Jun 1;12(6):1882–90. doi: 10.1046/j.1460-9568.2000.00069.x
  • Longpre F, Garneau P, Christen Y, Ramassamy C. Protection by EGb 761 against beta-amyloid-induced neurotoxicity: Involvement of NF-kappa B, SIRT1, and MAPKs pathways and inhibition of amyloid fibril formation. Free Radic Biol Med 2006;41:1781–94. doi: 10.1016/j.freeradbiomed.2006.08.015
  • Wu Y, Wu Z, Butko P, Christen Y, Lambert MP, Klein WL, et al. Amyloid-beta-induced pathological behaviors are suppressed by Ginkgo biloba extract EGb 761 and ginkgolides in transgenic Caenorhabditis elegans. J Neurosci 2006;26(50):13102–13. doi: 10.1523/JNEUROSCI.3448-06.2006
  • Zhou LJ, Zhu XZ. Reactive oxygen species-induced apoptosis in PC12 cells and protective effect of bilobalide. J Pharmacol Exp Ther 2000 Jun 1;293(3):982–8.
  • Block E. The chemistry of garlic and onions. Sci Am 1985;252(3):114–9. doi: 10.1038/scientificamerican0385-114
  • Lawson LD. Garlic: a review of its medicinal effects and indicated active compounds. In: Lawson LD, Bauer R, (eds.) Phytomedicines of Europe: chemistry and biological activity. Washington, DC: American Chemical Society; 1998. p. 177–209.
  • Minami T, Boku T, Inada K, Morita M, Okasaki Y. Odor components of human breath after the ingestion of grated raw garlic. J Food Sci 1989;54:763–5. doi: 10.1111/j.1365-2621.1989.tb04703.x
  • Selassie M, Griffin B, Gwebu N, Gwebu ET. Aged garlic extract attenuates the cytotoxicity of beta-amyloid on undifferentiated PC12 cells. In Vitro Cell Dev Biol Anim 1999;35(7):369–70. doi: 10.1007/s11626-999-0109-2
  • Gupta VB, Indi SS, Rao KSJ. Garlic extract exhibits antiamyloidogenic activity on amyloid-beta fibrillogenesis: relevance to Alzheimer’s disease. Phyther Res 2009;23(1):111–5. doi: 10.1002/ptr.2574
  • Nillert N, Pannangrong W, Welbat JU, Chaijaroonkhanarak W, Sripanidkulchai K, Sripanidkulchai B. Neuroprotective effects of aged garlic extract on cognitive dysfunction and neuroinflammation induced by β-Amyloid in rats. Nutrients 2017 Jan 3;9(1):24. doi: 10.3390/nu9010024

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.