Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 22, 2019 - Issue 6
429
Views
20
CrossRef citations to date
0
Altmetric
Articles

Genistein: mechanisms of action for a pleiotropic neuroprotective agent in stroke

&

References

  • Writing Group M, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation 2016;133(4):e38–e360.
  • Khandelwal P, Yavagal DR, Sacco RL. Acute ischemic stroke intervention. J Am Coll Cardiol 2016;67(22):2631–44.
  • O’Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW. 1,026 experimental treatments in acute stroke. Ann Neurol 2006;59(3):467–77.
  • Slowik A, Beyer C. Inflammasomes are neuroprotective targets for sex steroids. J Steroid Biochem Mol Biol 2015;153:135–43.
  • Engler-Chiurazzi EB, Brown CM, Povroznik JM, Simpkins JW. Estrogens as neuroprotectants: estrogenic actions in the context of cognitive aging and brain injury. Prog Neurobiol 2016.
  • Sayeed I, Stein DG. Progesterone as a neuroprotective factor in traumatic and ischemic brain injury. Prog Brain Res 2009;175:219–37.
  • Fréchou M, Zhang S, Liere P, Delespierre B, Soyed N, Pianos A, et al. Intranasal delivery of progesterone after transient ischemic stroke decreases mortality and provides neuroprotection. Neuropharmacology 2015;97:394–403.
  • Quillinan N, Deng G, Grewal H, Herson PS. Androgens and stroke: good, bad or indifferent? Exp Neurol 2014;259:10–5.
  • Fanaei H, Karimian SM, Sadeghipour HR, Hassanzade G, Kasaeian A, Attari F, et al. Testosterone enhances functional recovery after stroke through promotion of antioxidant defenses, BDNF levels and neurogenesis in male rats. Brain Res 2014;1558:74–83.
  • Bertorelli R, Adami M, Di Santo E, Ghezzi P. MK 801 and dexamethasone reduce both tumor necrosis factor levels and infarct volume after focal cerebral ischemia in the rat brain. Neurosci Lett 1998;246(1):41–4.
  • Feng Y, Lu S, Wang J, Kumar P, Zhang L, Bhatt AJ. Dexamethasone-induced neuroprotection in hypoxic-ischemic brain injury in newborn rats is partly mediated via Akt activation. Brain Res 2014;1589:68–77.
  • Hogue CW, Jr., Freedland K, Hershey T, Fucetola R, Nassief A, Barzilai B, et al. Neurocognitive outcomes are not improved by 17beta-estradiol in postmenopausal women undergoing cardiac surgery. Stroke 2007;38(7):2048–54.
  • Zeng Y, Zhang Y, Ma J, Xu J, Gemma M. Progesterone for acute traumatic brain injury: a systematic review of randomized controlled trials. PLoS One 2015;10(10):e0140624.
  • Gibson CL, Bath PM. Feasibility of progesterone treatment for ischaemic stroke. J Cereb Blood Flow Metab 2016;36(3):487–91.
  • Grummisch JA, Jadavji NM, Smith PD. The pleiotropic effects of tissue plasminogen activator in the brain: implications for stroke recovery. Neural Regen Res 2016;11(9):1401–2.
  • Ramos E, Patiño P, Reiter RJ, Gil-Martín E, Marco-Contelles J, Parada E, et al. Ischemic brain injury: New insights on the protective role of melatonin. Free Radic Biol Med 2017;104:32–53.
  • Oesterle A, Laufs U, Liao JK. Pleiotropic effects of statins on the cardiovascular system. Circ Res 2017;120(1):229–43.
  • Zhou H, Huang S, Sunnassee G, Guo W, Chen J, Guo Y, et al. Neuroprotective effects of adjunctive treatments for acute stroke thrombolysis: a review of clinical evidence. Int J Neurosci 2017:1–11.
  • Kokubo Y, Iso H, Ishihara J, Okada K, Inoue M, Tsugane S. Association of dietary intake of soy, beans, and isoflavones with risk of cerebral and myocardial infarctions in Japanese populations: the Japan public health center-based (JPHC) study cohort I. Circulation 2007;116(22):2553–62.
  • Liang W, Lee AH, Binns CW, Huang R, Hu D, Shao H. Soy consumption reduces risk of ischemic stroke: a case-control study in southern China. Neuroepidemiology 2009;33(2):111–6.
  • Manach C, Scalbert A, Morand C, Remesy C, Jimenez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004;79(5):727–47.
  • Siow RC, Li FY, Rowlands DJ, de Winter P, Mann GE. Cardiovascular targets for estrogens and phytoestrogens: transcriptional regulation of nitric oxide synthase and antioxidant defense genes. Free Radic Biol Med 2007;42(7):909–25.
  • Ganai AA, Farooqi H. Bioactivity of genistein: a review of in vitro and in vivo studies. Biomed Pharmacother 2015;76:30–8.
  • Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010;2(12):1231–46.
  • Bennetau-Pelissero C, Latonnelle K, Séqueira A, Lamothe V. Phytoestrogens, endocrine disrupters from food. Analusis 2000;28(9):763–75.
  • Diel P, Schulz T, Smolnikar K, Strunck E, Vollmer G, Michna H. Ability of xeno- and phytoestrogens to modulate expression of estrogen-sensitive genes in rat uterus: estrogenicity profiles and uterotropic activity. J Steroid Biochem Mol Biol 2000;73(1–2):1–10.
  • Lampe JW. Isoflavonoid and lignan phytoestrogens as dietary biomarkers. J Nutr 2003;133(Suppl 3):956S–64S.
  • Harris DM, Besselink E, Henning SM, Go VL, Heber D. Phytoestrogens induce differential estrogen receptor alpha- or Beta-mediated responses in transfected breast cancer cells. Exp Biol Med (Maywood) 2005;230(8):558–68.
  • Ise R, Han D, Takahashi Y, Terasaka S, Inoue A, Tanji M, et al. Expression profiling of the estrogen responsive genes in response to phytoestrogens using a customized DNA microarray. FEBS Lett 2005;579(7):1732–40.
  • Morito K, Hirose T, Kinjo J, Hirakawa T, Okawa M, Nohara T, et al. Interaction of phytoestrogens with estrogen receptors alpha and beta. Biol Pharm Bull 2001;24(4):351–6.
  • Liggins J, Bluck LJ, Runswick S, Atkinson C, Coward WA, Bingham SA. Daidzein and genistein content of fruits and nuts. J Nutr Biochem 2000;11(6):326–31.
  • Dixon RA, Ferreira D. Genistein. Phytochemistry 2002;60(3):205–11.
  • Harnly JM, Doherty RF, Beecher GR, Holden JM, Haytowitz DB, Bhagwat S, et al. Flavonoid content of U.S. fruits, vegetables, and nuts. J Agric Food Chem 2006;54(26):9966–77.
  • Bhagwat S, Haytowitz DB, Holden JM. USDA database for the isoflavone content of selected foods release 2.0. In: Agriculture USDo, editor. Maryland: U.S. Department of Agriculture; 2008.
  • Glazier MG, Bowman MA. A review of the evidence for the use of phytoestrogens as a replacement for traditional estrogen replacement therapy. Arch Intern Med 2001;161(9):1161–72.
  • Czuczwar P, Paszkowski T, Lisiecki M, Wozniak S, Stepniak A. The safety and tolerance of phytotherapies in menopausal medicine - a review of the literature. Prz Menopauzalny 2017;16(1):8–11.
  • Setchell KD. Absorption and metabolism of soy isoflavones-from food to dietary supplements and adults to infants. J Nutr 2000;130(3):654S–5S.
  • Zubik L, Meydani M. Bioavailability of soybean isoflavones from aglycone and glucoside forms in American women. Am J Clin Nutr 2003;77(6):1459–65.
  • Cassidy A, Brown JE, Hawdon A, Faughnan MS, King LJ, Millward J, et al. Factors affecting the bioavailability of soy isoflavones in humans after ingestion of physiologically relevant levels from different soy foods. J Nutr 2006;136(1):45–51.
  • Rowland I, Faughnan M, Hoey L, Wahala K, Williamson G, Cassidy A. Bioavailability of phyto-oestrogens. Br J Nutr 2003;89(Suppl 1):S45–58.
  • Sepehr E, Cooke G, Robertson P, Gilani GS. Bioavailability of soy isoflavones in rats part I: application of accurate methodology for studying the effects of gender and source of isoflavones. Mol Nutr Food Res 2007;51(7):799–812.
  • Setchell KD, Brown NM, Desai P, Zimmer-Nechemias L, Wolfe BE, Brashear WT, et al. Bioavailability of pure isoflavones in healthy humans and analysis of commercial soy isoflavone supplements. J Nutr 2001;131(4 Suppl):1362S–75S.
  • Setchell KD, Brown NM, Desai PB, Zimmer-Nechimias L, Wolfe B, Jakate AS, et al. Bioavailability, disposition, and dose-response effects of soy isoflavones when consumed by healthy women at physiologically typical dietary intakes. J Nutr 2003;133(4):1027–35.
  • Yang Z, Kulkarni K, Zhu W, Hu M. Bioavailability and pharmacokinetics of genistein: mechanistic studies on its ADME. Anticancer Agents Med Chem 2012;12(10):1264–80.
  • Nielsen IL, Williamson G. Review of the factors affecting bioavailability of soy isoflavones in humans. Nutr Cancer 2007;57(1):1–10.
  • Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Ischemia/reperfusion. Compr Physiol 2011;110(1):113–70.
  • Nguyen HN, Miyagawa N, Miura K, Okuda N, Yoshita K, Arai Y, et al. Dietary tofu intake and long-term risk of death from stroke in a general population. Clin Nutr 2016.
  • Talaei M, Koh WP, van Dam RM, Yuan JM, Pan A. Dietary soy intake is not associated with risk of cardiovascular disease mortality in Singapore Chinese adults. J Nutr 2014;144(6):921–8.
  • Yu D, Shu XO, Li H, Yang G, Cai Q, Xiang YB, et al. Dietary isoflavones, urinary isoflavonoids, and risk of ischemic stroke in women. Am J Clin Nutr 2015;102(3):680–6.
  • Kindy MS. Inhibition of tyrosine phosphorylation prevents delayed neuronal death following cerebral ischemia. J Cereb Blood Flow Metab 1993;13(3):372–7.
  • Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N, et al. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem 1987;262(12):5592–5.
  • Akiyama T, Ogawara H. Use and specificity of genistein as inhibitor of protein-tyrosine kinases. Methods Enzymol 1991;201:362–70.
  • Peeters PH, Slimani N, van der Schouw YT, Grace PB, Navarro C, Tjonneland A, et al. Variations in plasma phytoestrogen concentrations in European adults. J Nutr 2007;137(5):1294–300.
  • Travis RC, Allen NE, Appleby PN, Price A, Kaaks R, Chang-Claude J, et al. Prediagnostic concentrations of plasma genistein and prostate cancer risk in 1,605 men with prostate cancer and 1,697 matched control participants in EPIC. Cancer Causes Control 2012;23(7):1163–71.
  • Ko KP, Kim CS, Ahn Y, Park SJ, Kim YJ, Park JK, et al. Plasma isoflavone concentration is associated with decreased risk of type 2 diabetes in Korean women but not men: results from the Korean genome and epidemiology study. Diabetologia 2015;58(4):726–35.
  • Li HC, Zhang GY. Inhibitory effect of genistein on activation of STAT3 induced by brain ischemia/reperfusion in rat hippocampus. Acta Pharmacol Sin 2003;24(11):1131–6.
  • Donzelli A, Braida D, Finardi A, Capurro V, Valsecchi AE, Colleoni M, et al. Neuroprotective effects of genistein in Mongolian gerbils: estrogen receptor-beta involvement. J Pharmacol Sci 2010;114(2):158–67.
  • Wang R, Tu J, Zhang Q, Zhang X, Zhu Y, Ma W, et al. Genistein attenuates ischemic oxidative damage and behavioral deficits via eNOS/Nrf2/HO-1 signaling. Hippocampus 2013;23(7):634–47.
  • Liang HW, Qiu SF, Shen J, Sun LN, Wang JY, Bruce IC, et al. Genistein attenuates oxidative stress and neuronal damage following transient global cerebral ischemia in rat hippocampus. Neurosci Lett 2008;438(1):116–20.
  • Castelló-Ruiz M, Torregrosa G, Burguete MC, Salom JB, Gil JV, Miranda FJ, et al. Soy-derived phytoestrogens as preventive and acute neuroprotectors in experimental ischemic stroke: influence of rat strain. Phytomedicine 2011;18(6):513–5.
  • Cortina B, Torregrosa G, Castelló-Ruiz M, Burguete MC, Moscardó A, Latorre A, et al. Improvement of the circulatory function partially accounts for the neuroprotective action of the phytoestrogen genistein in experimental ischemic stroke. Eur J Pharmacol 2013;708(1–3):88–94.
  • Aras AB, Guven M, Akman T, Alacam H, Kalkan Y, Silan C, et al. Genistein exerts neuroprotective effect on focal cerebral ischemia injury in rats. Inflammation 2015;38(3):1311–21.
  • Trieu VN, Uckun FM. Genistein is neuroprotective in murine models of familial amyotrophic lateral sclerosis and stroke. Biochem Biophys Res Commun 1999;258(3):685–8.
  • Schreihofer DA, Do KD, Schreihofer AM. High-soy diet decreases infarct size after permanent middle cerebral artery occlusion in female rats. Am J Physiol Regul Integr Comp Physiol 2005;289(1):R103–8.
  • Burguete MC, Torregrosa G, Perez-Asensio FJ, Castello-Ruiz M, Salom JB, Gil JV, et al. Dietary phytoestrogens improve stroke outcome after transient focal cerebral ischemia in rats. Eur J Neurosci 2006;23(3):703–10.
  • Cheatwood JL, Burnet D, Butteiger DN, Banz WJ. Soy protein diet increases skilled forelimb reaching function after stroke in rats. Behav Brain Res 2011;216(2):681–4.
  • Prongay KD, Lewis AD, Hurn PD, Murphy SJ. Dietary soy may not confound acute experimental stroke infarct volume outcomes in ovariectomized female rats. Lab Anim 2010.
  • Ma Y, Sullivan JC, Schreihofer DA. Dietary genistein and equol (4’, 7 isoflavandiol) reduce oxidative stress and protect rats against focal cerebral ischemia. Am J Physiol Regul Integr Comp Physiol 2010;299(3):R871–7.
  • Qian Y, Guan T, Huang M, Cao L, Li Y, Cheng H, et al. Neuroprotection by the soy isoflavone, genistein, via inhibition of mitochondria-dependent apoptosis pathways and reactive oxygen induced-NF-kappaB activation in a cerebral ischemia mouse model. Neurochem Int 2012;60(8):759–67.
  • Wang S, Wei H, Cai M, Lu Y, Hou W, Yang Q, et al. Genistein attenuates brain damage induced by transient cerebral ischemia through up-regulation of ERK activity in ovariectomized mice. Int J Biolog Sci 2014;10(4):457–65.
  • Shi R, Wang S, Qi X, Chen S, Chen P, Zhang Q. Lose dose genistein inhibits glucocorticoid receptor and ischemic brain injury in female rats. Neurochem Int 2014;65:14–22.
  • Rajput MS, Sarkar PD, Nirmal NP. Inhibition of DPP-4 activity and neuronal atrophy with genistein attenuates neurological deficits induced by transient global cerebral ischemia and reperfusion in streptozotocin-induced diabetic mice. Inflammation 2017;40(2):623–35.
  • Li L, Xue J, Liu R, Li X, Lai L, Xie J, et al. Neuroprotective effects of genistein-3’-sodium sulfonate on focal cerebral ischemia in rats. Neurosci Lett 2017;646:43–8.
  • Schreihofer DA, Redmond L. Soy phytoestrogens are neuroprotective against stroke-like injury in vitro. Neuroscience 2009;158(2):602–9.
  • Ma XL, Zhang F, Wang YX, He CC, Tian K, Wang HG, et al. Genistein inhibition of OGD-induced brain neuron death correlates with its modulation of apoptosis, voltage-gated potassium and sodium currents and glutamate signal pathway. Chem Biol Interact 2016;254:73–82.
  • Linford NJ, Dorsa DM. 17beta-Estradiol and the phytoestrogen genistein attenuate neuronal apoptosis induced by the endoplasmic reticulum calcium-ATPase inhibitor thapsigargin. Steroids 2002;67(13–14):1029–40.
  • Ho KP, Li L, Zhao L, Qian ZM. Genistein protects primary cortical neurons from iron-induced lipid peroxidation. Mol Cell Biochem 2003;247(1–2):219–22.
  • Qian Y, Cao L, Guan T, Chen L, Xin H, Li Y, et al. Protection by genistein on cortical neurons against oxidative stress injury via inhibition of NF-kappaB, JNK and ERK signaling pathway. Pharm Biol 2015;53(8):1124–32.
  • Occhiuto F, Zangla G, Samperi S, Palumbo DR, Pino A, De Pasquale R, et al. The phytoestrogenic isoflavones from Trifolium pratense L. (red clover) protects human cortical neurons from glutamate toxicity. Phytomedicine 2008;15(9):676–82.
  • Sonee M, Sum T, Wang C, Mukherjee SK. The soy isoflavone, genistein, protects human cortical neuronal cells from oxidative stress. Neurotoxicology 2004;25(5):885–91.
  • Zhao L, Chen Q, Diaz Brinton R. Neuroprotective and neurotrophic efficacy of phytoestrogens in cultured hippocampal neurons. Exp Biol Med (Maywood) 2002;227(7):509–19.
  • Kajta M, Domin H, Grynkiewicz G, Lason W. Genistein inhibits glutamate-induced apoptotic processes in primary neuronal cell cultures: an involvement of aryl hydrocarbon receptor and estrogen receptor/glycogen synthase kinase-3beta intracellular signaling pathway. Neuroscience 2007;145(2):592–604.
  • Mercer LD, Kelly BL, Horne MK, Beart PM. Dietary polyphenols protect dopamine neurons from oxidative insults and apoptosis: investigations in primary rat mesencephalic cultures. Biochem Pharmacol 2005;69(2):339–45.
  • Atlante A, Bobba A, Paventi G, Pizzuto R, Passarella S. Genistein and daidzein prevent low potassium-dependent apoptosis of cerebellar granule cells. Biochem Pharmacol 2010;79(5):758–67.
  • Yang SH, Liu R, Wu SS, Simpkins JW. The use of estrogens and related compounds in the treatment of damage from cerebral ischemia. Ann N Y Acad Sci 2003;1007:101–7.
  • Brann D, Raz L, Wang R, Vadlamudi R, Zhang Q. Oestrogen signalling and neuroprotection in cerebral ischaemia. J Neuroendocrinol 2012;24(1):34–47.
  • Schreihofer DA, Ma Y. Estrogen receptors and ischemic neuroprotection: who, what, where, and when? Brain Res 2013;1514:107–22.
  • Almey A, Milner TA, Brake WG. Estrogen receptors in the central nervous system and their implication for dopamine-dependent cognition in females. Horm Behav 2015;74:125–38.
  • Arnal JF, Lenfant F, Metivier R, Flouriot G, Henrion D, Adlanmerini M, et al. Membrane and nuclear estrogen receptor alpha actions: from tissue specificity to medical implications. Physiol Rev 2017;97(3):1045–87.
  • Zimmerman MA, Budish RA, Kashyap S, Lindsey SH. GPER-novel membrane oestrogen receptor. Clin Sci (Lond) 2016;130(12):1005–16.
  • Dubal DB, Zhu H, Yu J, Rau SW, Shughrue PJ, Merchenthaler I, et al. Estrogen receptor a, not b, is a critical link in estradiol-mediated protection against brain injury. Proc Natl Acad Sci U S A 2000;98(4):1952–7.
  • Elzer JG, Muhammad S, Wintermantel TM, Regnier-Vigouroux A, Ludwig J, Schutz G, et al. Neuronal estrogen receptor-alpha mediates neuroprotection by 17beta-estradiol. J Cereb Blood Flow Metab 2009.
  • Farr TD, Carswell HV, Gsell W, Macrae IM. Estrogen receptor beta agonist diarylpropiolnitrile (DPN) does not mediate neuroprotection in a rat model of permanent focal ischemia. Brain Res 2007;1185(Dec 14):275–82.
  • Sampei K, Goto S, Alkayed NJ, Crain BJ, Korach KS, Traystman RJ, et al. Stroke in estrogen receptor – deficient mice editorial comment. Stroke 2000;31(3):738–43. discussion 44.
  • Carswell HV, Macrae IM, Gallagher L, Harrop E, Horsburgh KJ. Neuroprotection by a selective estrogen receptor {beta} agonist in a mouse model of global ischemia. Am J Physiol Heart Circ Physiol 2004;287(4):H1501–H4.
  • Connell BJ, Saleh TM. Differential neuroprotection of selective estrogen receptor agonists against autonomic dysfunction and ischemic cell death in permanent versus reperfusion injury. Adv Pharmacol Sci 2011;2011:976951.
  • Zhang B, Subramanian S, Dziennis S, Jia J, Uchida M, Akiyoshi K, et al. Estradiol and G1 reduce infarct size and improve immunosuppression after experimental stroke. J Immunol 2010;184(8):4087–94.
  • Tang H, Zhang Q, Yang L, Dong Y, Khan M, Yang F, et al. GPR30 mediates estrogen rapid signaling and neuroprotection. Mol Cell Endocrinol 2014;387(1–2):52–8.
  • Broughton BR, Brait VH, Kim HA, Lee S, Chu HX, Gardiner-Mann CV, et al. Sex-dependent effects of G protein-coupled estrogen receptor activity on outcome after ischemic stroke. Stroke 2014;45(3):835–41.
  • Carter MW, Smart WW, Jr., Matrone G. Estimation of estrogenic activity of genistein obtained from soybean meal. Proc Soc Exp Biol Med 1953;84(2):506–8.
  • Biggers JD, Curnow DH. Oestrogenic activity of subterranean clover. I. The oestrogenic activity of genistein. Biochem J 1954;58(2):278–82.
  • Martin PM, Horwitz KB, Ryan DS, McGuire WL. Phytoestrogen interaction with estrogen receptors in human breast cancer cells. Endocrinology 1978;103(5):1860–7.
  • Kuiper GGJM, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson J-Å. Cloning of a novel estrogen receptor expressed in rat prostate and ovary. Proc Natl Acad Sci U S A 1996;93:5925–30.
  • Kuiper GGJM, Carlsson B, Grandien K, Enmark E, Häggblad J, Nilsson S, et al. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 1997;138(3):863–70.
  • Kuiper GGJM, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT, et al. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor ß. Endocrinology 1998;139(10):4252–63.
  • Schreihofer DA. Transcriptional regulation by phytoestrogens in neuronal cell lines. Mol Cell Endocrinol 2005;231(1–2):13–22.
  • Routledge EJ, White R, Parker MG, Sumpter JP. Differential effects of xenoestrogens on coactivator recruitment by estrogen receptor (ER) alpha and ERbeta. J Biol Chem 2000;275(46):35986–93.
  • An J, Tzagarakis-Foster C, Scharschmidt TC, Lomri N, Leitman DC. Estrogen receptor beta-selective transcriptional activity and recruitment of coregulators by phytoestrogens. J Biol Chem 2001;276(21):17808–14.
  • Jiang Y, Gong P, Madak-Erdogan Z, Martin T, Jeyakumar M, Carlson K, et al. Mechanisms enforcing the estrogen receptor beta selectivity of botanical estrogens. FASEB J 2013;27(11):4406–18.
  • Manach C, Williamson G, Morand C, Scalbert A, Remesy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 2005;81(1 Suppl):230S–42S.
  • Maggiolini M, Vivacqua A, Fasanella G, Recchia AG, Sisci D, Pezzi V, et al. The G protein-coupled receptor GPR30 mediates c-fos up-regulation by 17beta-estradiol and phytoestrogens in breast cancer cells. J Biol Chem 2004;279(26):27008–16.
  • Thomas P, Dong J. Binding and activation of the seven-transmembrane estrogen receptor GPR30 by environmental estrogens: a potential novel mechanism of endocrine disruption. J Steroid Biochem Mol Biol 2006;102(1–5):175–9.
  • Morán J, Perez-Basterrechea M, Garrido P, Diaz E, Alonso A, Otero J, et al. Effects of estrogen and phytoestrogen treatment on an In vitro model of recurrent stroke on HT22 neuronal cell line. Cell Mol Neurobiol 2017;37(3):405–16.
  • Wang YX, Tian K, He CC, Ma XL, Zhang F, Wang HG, et al. Genistein inhibits hypoxia, ischemic-induced death, and apoptosis in PC12 cells. Environ Toxicol Pharmacol 2017;50:227–33.
  • Amiri Gheshlaghi S, Mohammad Jafari R, Algazo M, Rahimi N, Alshaib H, Dehpour AR. Genistein modulation of seizure: involvement of estrogen and serotonin receptors. J Nat Med 2017.
  • McDowell ML, Das A, Smith JA, Varma AK, Ray SK, Banik NL. Neuroprotective effects of genistein in VSC4.1 motoneurons exposed to activated microglial cytokines. Neurochem Int 2011;59(2):175–84.
  • Dang ZC, Audinot V, Papapoulos SE, Boutin JA, Löwik CWGM. Peroxisome proliferator-activated receptor gamma (PPARgamma) as a molecular target for the soy phytoestrogen genistein. J Biol Chem 2003;278(2):962–7.
  • Aleshin S, Strokin M, Sergeeva M, Reiser G. Peroxisome proliferator-activated receptor (PPAR)beta/delta, a possible nexus of PPARalpha- and PPARgamma-dependent molecular pathways in neurodegenerative diseases: review and novel hypotheses. Neurochem Int 2013;63(4):322–30.
  • Ouk T, Potey C, Gautier S, Bastide M, Deplanque D, Staels B, et al. PPARs: a potential target for a disease-modifying strategy in stroke. Curr Drug Targets 2013;14(7):752–67.
  • Valles SL, Dolz-Gaiton P, Gambini J, Borras C, Lloret A, Pallardo FV, et al. Estradiol or genistein prevent Alzheimer’s disease-associated inflammation correlating with an increase PPAR gamma expression in cultured astrocytes. Brain Res 2010;1312:138–44.
  • Bonet-Costa V, Herranz-Pérez V, Blanco-Gandia MC, Mas-Bargues C, Inglés M, Garcia-Tarraga P, et al. Clearing amyloid-beta through PPARgamma/ApoE activation by genistein is a treatment of experimental Alzheimer’s disease. J Alzheimers Dis 2016;51(3):701–11.
  • Sundararajan S, Gamboa JL, Victor NA, Wanderi EW, Lust WD, Landreth GE. Peroxisome proliferator-activated receptor-gamma ligands reduce inflammation and infarction size in transient focal ischemia. Neuroscience 2005;130(3):685–96.
  • Luo Y, Yin W, Signore AP, Zhang F, Hong Z, Wang S, et al. Neuroprotection against focal ischemic brain injury by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. J Neurochem 2006;97(2):435–48.
  • Zhang HL, Xu M, Wei C, Qin AP, Liu CF, Hong LZ, et al. Neuroprotective effects of pioglitazone in a rat model of permanent focal cerebral ischemia are associated with peroxisome proliferator-activated receptor gamma-mediated suppression of nuclear factor-kappaB signaling pathway. Neuroscience 2011;176:381–95.
  • Allahtavakoli M, Shabanzadeh AP, Sadr SS, Parviz M, Djahanguiri B. Rosiglitazone, a peroxisome proliferator-activated receptor-gamma ligand, reduces infarction volume and neurological deficits in an embolic model of stroke. Clin Exp Pharmacol Physiol 2006;33(11):1052–8.
  • Wang CX, Ding X, Noor R, Pegg C, He C, Shuaib A. Rosiglitazone alone or in combination with tissue plasminogen activator improves ischemic brain injury in an embolic model in rats. J Cereb Blood Flow Metab 2009;29(10):1683–94.
  • Cuartero MI, Ballesteros I, de la Parra J, Harkin AL, Abautret-Daly A, Sherwin E, et al. L-kynurenine/aryl hydrocarbon receptor pathway mediates brain damage after experimental stroke. Circulation 2014;130(23):2040–51.
  • Ashida H, Fukuda I, Yamashita T, Kanazawa K. Flavones and flavonols at dietary levels inhibit a transformation of aryl hydrocarbon receptor induced by dioxin. FEBS Lett 2000;476(3):213–7.
  • Zhang S, Qin C, Safe SH. Flavonoids as aryl hydrocarbon receptor agonists/antagonists: effects of structure and cell context. Environ Health Perspect 2003;111(16):1877–82.
  • Bialesova L, Novotna A, Macejova D, Brtko J, Dvorak Z. Agonistic effect of selected isoflavones on arylhydrocarbon receptor in a novel AZ-AhR transgenic gene reporter human cell line. Gen Physiol Biophys 2015;34(3):331–4.
  • Suetsugi M, Su L, Karlsberg K, Yuan YC, Chen S. Flavone and isoflavone phytoestrogens are agonists of estrogen-related receptors. Mol Cancer Res 2003;1(13):981–91.
  • Huang Z, Fang F, Wang J, Wong CW. Structural activity relationship of flavonoids with estrogen-related receptor gamma. FEBS Lett 2010;584(1):22–6.
  • Yang Y, Bai L, Li X, Xiong J, Xu P, Guo C, et al. Transport of active flavonoids, based on cytotoxicity and lipophilicity: an evaluation using the blood-brain barrier cell and Caco-2 cell models. Toxicol In Vitro 2014;28(3):388–96.
  • Chang HC, Churchwell MI, Delclos KB, Newbold RR, Doerge DR. Mass spectrometric determination of genistein tissue distribution in diet-exposed Sprague-Dawley rats. J Nutr 2000;130(8):1963–70.
  • Lovekamp-Swan T, Glendenning M, Schreihofer DA. A high soy diet reduces programmed cell death and enhances bcl-x(L) expression in experimental stroke. Neuroscience 2007;148(3):644–52.
  • de Oliveira MR. Evidence for genistein as a mitochondriotropic molecule. Mitochondrion 2016;29:35–44.
  • Wei H, Bowen R, Cai Q, Barnes S, Wang Y. Antioxidant and antipromotional effects of the soybean isoflavone genistein. Proc Soc Exp Biol Med 1995;208(1):124–30.
  • Mann GE, Bonacasa B, Ishii T, Siow RC. Targeting the redox sensitive Nrf2-Keap1 defense pathway in cardiovascular disease: protection afforded by dietary isoflavones. Curr Opin Pharmacol 2009;9(2):139–45.
  • Devi KP, Shanmuganathan B, Manayi A, Nabavi SF, Nabavi SM. Molecular and therapeutic targets of genistein in Alzheimer’s disease. Mol Neurobiol 2016.
  • Mitchell JH, Gardner PT, McPhail DB, Morrice PC, Collins AR, Duthie GG. Antioxidant efficacy of phytoestrogens in chemical and biological model systems. Arch Biochem Biophys 1998;360(1):142–8.
  • Arora A, Nair MG, Strasburg GM. Antioxidant activities of isoflavones and their biological metabolites in a liposomal system. Arch Biochem Biophys 1998;356(2):133–41.
  • Kruk I, Aboul-Enein HY, Michalska T, Lichszteld K, Kladna A. Scavenging of reactive oxygen species by the plant phenols genistein and oleuropein. Luminescence 2005;20(2):81–9.
  • Trieu VN, Dong Y, Zheng Y, Uckun FM. In vivo antioxidant activity of genistein in a murine model of singlet oxygen-induced cerebral stroke. Radiat Res 1999;152(5):508–16.
  • Xu XW, Shi C, He ZQ, Ma CM, Chen WH, Shen YP, et al. Effects of phytoestrogen on mitochondrial structure and function of hippocampal CA1 region of ovariectomized rats. Cell Mol Neurobiol 2008;28(6):875–86.
  • Nguyen T, Nioi P, Pickett CB. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 2009;284(20):13291–5.
  • Zhang R, Xu M, Wang Y, Xie F, Zhang G, Qin X. Nrf2-a promising therapeutic target for defensing against oxidative stress in stroke. Mol Neurobiol 2016.
  • Ya BL, Li HF, Wang HY, Wu F, Xin Q, Cheng HJ, et al. 5-HMF attenuates striatum oxidative damage via Nrf2/ARE signaling pathway following transient global cerebral ischemia. Cell Stress Chaperones 2017;22(1):55–65.
  • Han J, Xiao Q, Lin YH, Zheng ZZ, He ZD, Hu J, et al. Neuroprotective effects of salidroside on focal cerebral ischemia/reperfusion injury involve the nuclear erythroid 2-related factor 2 pathway. Neural Regen Res 2015;10(12):1989–96.
  • Lou J, Cao G, Li R, Liu J, Dong Z, Xu L. beta-Caryophyllene attenuates focal cerebral ischemia-reperfusion injury by Nrf2/HO-1 pathway in rats. Neurochem Res 2016;41(6):1291–304.
  • Liu Y, Zhang L, Liang J. Activation of the Nrf2 defense pathway contributes to neuroprotective effects of phloretin on oxidative stress injury after cerebral ischemia/reperfusion in rats. J Neurolog Sci 2015;351(1–2):88–92.
  • Schmitt CA, Dirsch VM. Modulation of endothelial nitric oxide by plant-derived products. Nitric Oxide 2009;21(2):77–91.
  • Moro MA, Cárdenas A, Hurtado O, Leza JC, Lizasoain I. Role of nitric oxide after brain ischaemia. Cell Calcium 2004;36(3–4):265–75.
  • Gingerich S, Krukoff TL. Estrogen modulates endothelial and neuronal nitric oxide synthase expression via an estrogen receptor {beta}-dependent mechanism in hypothalamic slice cultures. Endocrinology 2005;146(7):2933–41.
  • Dinerman JL, Dawson TM, Schell MJ, Snowman A, Snyder SH. Endothelial nitric oxide synthase localized to hippocampal pyramidal cells: implications for synaptic plasticity. Proc Natl Acad Sci U S A 1994;91(10):4214–8.
  • Iwase K, Miyanaka K, Shimizu A, Nagasaki A, Gotoh T, Mori M, et al. Induction of endothelial nitric-oxide synthase in rat brain astrocytes by systemic lipopolysaccharide treatment. J Biol Chem 2000;275(16):11929–33.
  • Ma W, Yuan L, Yu H, Ding B, Xi Y, Feng J, et al. Genistein as a neuroprotective antioxidant attenuates redox imbalance induced by beta-amyloid peptides 25–35 in PC12 cells. Int J Dev Neurosci 2010;28(4):289–95.
  • Su P, Zhang J, Wang S, Aschner M, Cao Z, Zhao F, et al. Genistein alleviates lead-induced neurotoxicity in vitro and in vivo: involvement of multiple signaling pathways. Neurotoxicology 2016;53:153–64.
  • Xi YD, Yu HL, Ding J, Ma WW, Yuan LH, Feng JF, et al. Flavonoids protect cerebrovascular endothelial cells through Nrf2 and PI3 K from beta-amyloid peptide-induced oxidative damage. Curr Neurovasc Res 2012;9(1):32–41.
  • Zhai X, Lin M, Zhang F, Hu Y, Xu X, Li Y, et al. Dietary flavonoid genistein induces Nrf2 and phase II detoxification gene expression via ERKs and PKC pathways and protects against oxidative stress in Caco-2 cells. Mol Nutr Food Res 2013;57(2):249–59.
  • Froyen EB, Steinberg FM. Soy isoflavones increase quinone reductase in hepa-1c1c7 cells via estrogen receptor beta and nuclear factor erythroid 2-related factor 2 binding to the antioxidant response element. J Nutr Biochem 2010.
  • Zhang T, Wang F, Xu HX, Yi L, Qin Y, Chang H, et al. Activation of nuclear factor erythroid 2-related factor 2 and PPARgamma plays a role in the genistein-mediated attenuation of oxidative stress-induced endothelial cell injury. Br J Nutr 2013;109(2):223–35.
  • Moosavi F, Hosseini R, Saso L, Firuzi O. Modulation of neurotrophic signaling pathways by polyphenols. Drug Des Dev Ther 2016;10:23–42.
  • Pan Y, Anthony M, Clarkson TB. Evidence for up-regulation of brain-derived neurotrophic factor mRNA by soy phytoestrogens in the frontal cortex of retired breeder female rats. Neurosci Lett 1999;261(1–2):17–20.
  • Pan M, Li Z, Yeung V, Xu RJ. Dietary supplementation of soy germ phytoestrogens or estradiol improves spatial memory performance and increases gene expression of BDNF, TrkB receptor and synaptic factors in ovariectomized rats. Nutr Metab 2010;7:75.
  • File SE, Hartley DE, Alom N, Rattray M. Soya phytoestrogens change cortical and hippocampal expression of BDNF mRNA in male rats. Neurosci Lett 2003;338(2):135–8.
  • Lovekamp-Swan T, Glendenning ML, Schreihofer DA. A high soy diet enhances neurotropin receptor and Bcl-XL gene expression in the brains of ovariectomized female rats. Brain Res 2007;1159:54–66.
  • Valsecchi AE, Franchi S, Panerai AE, Rossi A, Sacerdote P, Colleoni M. The soy isoflavone genistein reverses oxidative and inflammatory state, neuropathic pain, neurotrophic and vasculature deficits in diabetes mouse model. Eur J Pharmacol 2011;650(2–3):694–702.
  • Martin D, Song J, Mark C, Eyster K. Understanding the cardiovascular actions of soy isoflavones: potential novel targets for antihypertensive drug development. Cardiovasc Hematol Disord Drug Targets 2008;8(4):297–312.
  • Ma Y, Lovekamp-Swan T, Bekele W, Dohi A, Schreihofer DA. Hypoxia-inducible factor and vascular endothelial growth factor are targets of dietary soy during acute stroke in female rats. Endocrinology 2013;154(4):1589–97.
  • Xu SL, Bi CW, Choi RC, Zhu KY, Miernisha A, Dong TT, et al. Flavonoids induce the synthesis and secretion of neurotrophic factors in cultured rat astrocytes: a signaling response mediated by estrogen receptor. Evid Based Complement Alternat Med 2013;2013:127075.
  • Pan M, Han H, Zhong C, Geng Q. Effects of genistein and daidzein on hippocampus neuronal cell proliferation and BDNF expression in H19-7 neural cell line. J Nutr Health Aging 2012;16(4):389–94.
  • Gao QG, Xie JX, Wong MS, Chen WF. IGF-I receptor signaling pathway is involved in the neuroprotective effect of genistein in the neuroblastoma SK-N-SH cells. Eur J Pharmacol 2012;677(1–3):39–46.
  • Jin Y, Wu H, Cohen EM, Wei J, Jin H, Prentice H, et al. Genistein and daidzein induce neurotoxicity at high concentrations in primary rat neuronal cultures. J Biomed Sci 2007;14(2):275–84.
  • Linford NJ, Yang Y, Cook DG, Dorsa DM. Neuronal apoptosis resulting from high doses of the isoflavone genistein: role for calcium and p42/44 mitogen-activated protein kinase. J Pharmacol Exp Ther 2001;299(1):67–75.
  • Vallés SL, Borrás C, Gambini J, Furriol J, Ortega A, Sastre J, et al. Oestradiol or genistein rescues neurons from amyloid beta-induced cell death by inhibiting activation of p38. Aging Cell 2008;7(1):112–8.
  • Ding B, Yuan L, Yu H, Li L, Ma W, Bi Y, et al. Genistein and folic acid prevent oxidative injury induced by beta-amyloid peptide. Basic Clin Pharmacol Toxicol 2011;108(5):333–40.
  • Liao W, Jin G, Zhao M, Yang H. The effect of genistein on the content and activity of alpha- and beta-secretase and protein kinase C in abeta-injured hippocampal neurons. Basic Clin Pharmacol Toxicol 2013;112(3):182–5.
  • Morán J, Garrido P, Cabello E, Alonso A, González C. Effects of estradiol and genistein on the insulin signaling pathway in the cerebral cortex of aged female rats. Exp Gerontol 2014;58:104–12.
  • Ghiringhelli F, Rebe C, Hichami A, Delmas D. Immunomodulation and anti-inflammatory roles of polyphenols as anticancer agents. Anticancer Agents Med Chem 2012;12(8):852–73.
  • Leiherer A, Mündlein A, Drexel H. Phytochemicals and their impact on adipose tissue inflammation and diabetes. Vasc Pharmacol 2013;58(1–2):3–20.
  • Nagaraju GP, Zafar SF, El-Rayes BF. Pleiotropic effects of genistein in metabolic, inflammatory, and malignant diseases. Nutr Rev 2013;71(8):562–72.
  • Wang X, Chen S, Ma G, Ye M, Lu G. Genistein protects dopaminergic neurons by inhibiting microglial activation. Neuroreport 2005;16(3):267–70.
  • Lee YW, Lee WH. Protective effects of genistein on proinflammatory pathways in human brain microvascular endothelial cells. J Nutr Biochem 2008;19(12):819–25.
  • Lu H, Shi JX, Zhang DM, Chen HL, Qi M, Yin HX. Genistein, a soybean isoflavone, reduces the production of pro-inflammatory and adhesion molecules induced by hemolysate in brain microvascular endothelial cells. Acta Neurol Belg 2009;109(1):32–7.
  • Snow WM, Albensi BC. Neuronal gene targets of NF-kappaB and their dysregulation in Alzheimer’s disease. Front Mol Neurosci 2016;9:118.
  • Zhang Q, Lenardo MJ, Baltimore D. 30 years of NF-kappaB: a blossoming of relevance to human pathobiology. Cell 2017;168(1–2):37–57.
  • Shambayati M, Patel M, Ma Y, Cunningham RL, Schreihofer DA. Central inflammatory response to experimental stroke is inhibited by a neuroprotective dose of dietary soy. Brain Res 2014;1593:76–82.
  • Ganai AA, Husain M. Genistein alleviates neuroinflammation and restores cognitive function in rat model of hepatic encephalopathy: underlying mechanisms. Mol Neurobiol 2017.
  • Menze ET, Esmat A, Tadros MG, Khalifa AE, Abdel-Naim AB. Genistein improves sensorimotor gating: mechanisms related to its neuroprotective effects on the striatum. Neuropharmacology 2016;105:35–46.
  • Rajput MS, Sarkar PD. Modulation of neuro-inflammatory condition, acetylcholinesterase and antioxidant levels by genistein attenuates diabetes associated cognitive decline in mice. Chem Biol Interact 2017;268:93–102.
  • Jahromi SR, Arrefhosseini SR, Ghaemi A, Alizadeh A, Sabetghadam F, Togha M. Effect of oral genistein administration in early and late phases of allergic encephalomyelitis. Iran J Basic Med Sci 2014;17(7):509–15.
  • Zhao X, Yuan L, Yu H, Xi Y, Ma W, Zhou X, et al. Genistein inhibited amyloid-beta induced inflammatory damage in C6 glial cells. Arch Med Res 2014;45(2):152–7.
  • Jeong JW, Lee HH, Han MH, Kim GY, Kim WJ, Choi YH. Anti-inflammatory effects of genistein via suppression of the toll-like receptor 4-mediated signaling pathway in lipopolysaccharide-stimulated BV2 microglia. Chem Biol Interact 2014;212:30–9.
  • Zhou X, Yuan L, Zhao X, Hou C, Ma W, Yu H, et al. Genistein antagonizes inflammatory damage induced by beta-amyloid peptide in microglia through TLR4 and NF-kappaB. Nutrition 2014;30(1):90–5.
  • Kim DH, Jung WS, Kim ME, Lee HW, Youn HY, Seon JK, et al. Genistein inhibits proinflammatory cytokines in human mast cell activation through the inhibition of the ERK pathway. Int J Mol Med 2014;34(6):1669–74.
  • Xi YD, Zhang DD, Ding J, Yu HL, Yuan LH, Ma WW, et al. Genistein inhibits Abeta25–35-induced synaptic toxicity and regulates CaMKII/CREB pathway in SH-SY5Y cells. Cell Mol Neurobiol 2016;36(7):1151–9.
  • Huang R, Singh M, Dillon GH. Genistein directly inhibits native and recombinant NMDA receptors. Neuropharmacology 2010;58(8):1246–51.
  • Jia Z, Jia Y, Liu B, Zhao Z, Jia Q, Liang H, et al. Genistein inhibits voltage-gated sodium currents in SCG neurons through protein tyrosine kinase-dependent and kinase-independent mechanisms. Pflugers Arch 2008;456(5):857–66.
  • Zhao Z, Liu B, Zhang G, Jia Z, Jia Q, Geng X, et al. Molecular basis for genistein-induced inhibition of Kir2.3 currents. Pflugers Arch 2008;456(2):413–23.
  • Zhu L, Jiang ZL, Krnjević K, Wang FS, Ye JH. Genistein directly blocks glycine receptors of rat neurons freshly isolated from the ventral tegmental area. Neuropharmacology 2003;45(2):270–80.
  • Prentice H, Modi JP, Wu JY. Mechanisms of neuronal protection against excitotoxicity, endoplasmic reticulum stress, and mitochondrial dysfunction in stroke and neurodegenerative diseases. Oxid Med Cell Longev 2015;2015:1.
  • Krivonos OV, Amosova NA, Smolentseva IG. Use of the glutamate NMDA receptor antagonist PK-merz in acute stroke. Neurosci Behav Physiol 2010;40(5):529–32.
  • Muir KW. Glutamate-based therapeutic approaches: clinical trials with NMDA antagonists. Curr Opin Pharmacol 2006;6(1):53–60.
  • Vahid F, Zand H, Nosrat-Mirshekarlou E, Najafi R, Hekmatdoost A. The role dietary of bioactive compounds on the regulation of histone acetylases and deacetylases: a review. Gene 2015;562(1):8–15.
  • Yu L, Ham K, Gao X, Castro L, Yan Y, Kissling GE, et al. Epigenetic regulation of transcription factor promoter regions by low-dose genistein through mitogen-activated protein kinase and mitogen-and-stress activated kinase 1 nongenomic signaling. Cell Commun Signal 2016;14(1):117.
  • Li Y, Sarkar FH. Gene expression profiles of genistein-treated PC3 prostate cancer cells. J Nutr 2002;132(12):3623–31.
  • Lavigne JA, Takahashi Y, Chandramouli GV, Liu H, Perkins SN, Hursting SD, et al. Concentration-dependent effects of genistein on global gene expression in MCF-7 breast cancer cells: an oligo microarray study. Breast Cancer Res Treat 2008;110(1):85–98.
  • Gertz J, Reddy TE, Varley KE, Garabedian MJ, Myers RM. Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res 2012;22(11):2153–62.
  • Gong P, Madak-Erdogan Z, Li J, Cheng J, Greenlief CM, Helferich W, et al. Transcriptomic analysis identifies gene networks regulated by estrogen receptor alpha (ERalpha) and ERbeta that control distinct effects of different botanical estrogens. Nucl Recept Signal 2014;12:e001.
  • Amer DA, Jähne M, Weigt C, Kretzschmar G, Vollmer G. Effect of 17beta-estradiol and flavonoids on the regulation of expression of newly identified oestrogen responsive genes in a rat raphe nuclei-derived cell line. J Cell Physiol 2012;227(10):3434–45.
  • Liu LX, Chen WF, Xie JX, Wong MS. Neuroprotective effects of genistein on dopaminergic neurons in the mice model of Parkinson’s disease. Neurosci Res 2008;60(2):156–61.
  • Mahn K, Borras C, Knock GA, Taylor P, Khan IY, Sugden D, et al. Dietary soy isoflavone induced increases in antioxidant and eNOS gene expression lead to improved endothelial function and reduced blood pressure in vivo. Faseb J 2005;19(12):1755–7.
  • Hu Z, Zhong B, Tan J, Chen C, Lei Q, Zeng L. The emerging role of epigenetics in cerebral ischemia. Mol Neurobiol 2017;54(3):1887–905.
  • Westberry JM, Prewitt AK, Wilson ME. Epigenetic regulation of the estrogen receptor alpha promoter in the cerebral cortex following ischemia in male and female rats. Neuroscience 2008;152(4):982–9.
  • Herzog R, Zendedel A, Lammerding L, Beyer C, Slowik A. Impact of 17beta-estradiol and progesterone on inflammatory and apoptotic microRNA expression after ischemia in a rat model. J Steroid Biochem Mol Biol 2017;167:126–34.
  • Wang Y, Dong X, Li Z, Wang W, Tian J, Chen J. Downregulated RASD1 and upregulated miR-375 are involved in protective effects of calycosin on cerebral ischemia/reperfusion rats. J Neurol Sci 2014;339(1–2):144–8.
  • Selvamani A, Williams MH, Miranda RC, Sohrabji F. Circulating miRNA profiles provide a biomarker for severity of stroke outcomes associated with age and sex in a rat model. Clin Sci (Lond) 2014;127(2):77–89.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.