Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 23, 2020 - Issue 2
3,892
Views
13
CrossRef citations to date
0
Altmetric
Articles

Brain activity and connectivity changes in response to glucose ingestion

, , , , , , & show all

References

  • Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW. Central nervous system control of food intake and body weight. Nature 2006;443(7109):289–95. doi: 10.1038/nature05026
  • Deem JD, Muta K, Scarlett JM, Morton GJ, Schwartz MW. How should we think about the role of the brain in glucose homeostasis and diabetes? Diabetes 2017;66(7):1758–65. doi: 10.2337/dbi16-0067
  • Mergenthaler P, Lindauer U, Dienel GA, Meisel A. Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci 2013;36(10):587–97. doi: 10.1016/j.tins.2013.07.001
  • Haase L, Cerf-Ducastel B, Murphy C. Cortical activation in response to pure taste stimuli during the physiological states of hunger and satiety. Neuroimage 2009;44(3):1008–21. doi: 10.1016/j.neuroimage.2008.09.044
  • Ulrich M, Endres F, Kolle M, Adolph O, Widenhorn-Muller K, Gron G. Glucose modulates food-related salience coding of midbrain neurons in humans. Hum Brain Mapp 2016;37(12):4376–84. doi: 10.1002/hbm.23316
  • Smeets PA, de Graaf C, Stafleu A, van Osch MJ, van der Grond J. Functional MRI of human hypothalamic responses following glucose ingestion. Neuroimage 2005;24(2):363–8. doi: 10.1016/j.neuroimage.2004.07.073
  • Smeets PA, Vidarsdottir S, de Graaf C, Stafleu A, van Osch MJ, Viergever MA, et al. Oral glucose intake inhibits hypothalamic neuronal activity more effectively than glucose infusion. Am J Physiol Endocrinol Metab 2007;293(3):E754–E758. doi: 10.1152/ajpendo.00231.2007
  • Jastreboff AM, Sinha R, Arora J, Giannini C, Kubat J, Malik S, et al. Altered brain response to drinking glucose and fructose in obese adolescents. Diabetes 2016;65(7):1929–39. doi: 10.2337/db15-1216
  • Avena NM, Rada P, Hoebel BG. Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci Biobehav Rev 2008;32(1):20–39. doi: 10.1016/j.neubiorev.2007.04.019
  • Colantuoni C, Rada P, McCarthy J, Patten C, Avena NM, Chadeayne A, et al. Evidence that intermittent, excessive sugar intake causes endogenous opioid dependence. Obes Res 2002;10(6):478–88. doi: 10.1038/oby.2002.66
  • Rada P, Avena NM, Hoebel BG. Daily bingeing on sugar repeatedly releases dopamine in the accumbens shell. Neuroscience 2005;134(3):737–44. doi: 10.1016/j.neuroscience.2005.04.043
  • Forster BB, MacKay AL, Whittall KP, Kiehl KA, Smith AM, Hare RD, et al. Functional magnetic resonance imaging: the basics of blood-oxygen-level dependent (BOLD) imaging. Can Assoc Radiol J 1998;49(5):320–9.
  • Beckmann CF, DeLuca M, Devlin JT, Smith SM. Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 2005;360(1457):1001–13. doi: 10.1098/rstb.2005.1634
  • Kullmann S, Heni M, Veit R, Ketterer C, Schick F, Haring HU, et al. The obese brain: association of body mass index and insulin sensitivity with resting state network functional connectivity. Hum Brain Mapp 2012;33(5):1052–61. doi: 10.1002/hbm.21268
  • Wink AM, de Munck JC, van der Werf YD, van den Heuvel OA, Barkhof F. Fast eigenvector centrality mapping of voxel-wise connectivity in functional magnetic resonance imaging: implementation, validation, and interpretation. Brain Connect 2012;2(5):265–74. doi: 10.1089/brain.2012.0087
  • Lohmann G, Margulies DS, Horstmann A, Pleger B, Lepsien J, Goldhahn D, et al. Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain. PLoS One 2010;5(4):e10232. doi: 10.1371/journal.pone.0010232
  • Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. FSL. Neuroimage 2012;62(2):782–90. doi: 10.1016/j.neuroimage.2011.09.015
  • Rombouts SA, Scheltens P, Kuijer JP, Barkhof F. Whole brain analysis of T2* weighted baseline FMRI signal in dementia. Hum Brain Mapp 2007;28(12):1313–7. doi: 10.1002/hbm.20349
  • Smith SM, Nichols TE. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage 2009;44(1):83–98. doi: 10.1016/j.neuroimage.2008.03.061
  • Pruim RH, Mennes M, van Rooij D, Llera A, Buitelaar JK, Beckmann CF. ICA-AROMA: a robust ICA-based strategy for removing motion artifacts from fMRI data. Neuroimage 2015;112:267–77. doi: 10.1016/j.neuroimage.2015.02.064
  • Pruim RH, Mennes M, Buitelaar JK, Beckmann CF. Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI. Neuroimage 2015;112:278–87. doi: 10.1016/j.neuroimage.2015.02.063
  • Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 2007;27(9):2349–56. doi: 10.1523/JNEUROSCI.5587-06.2007
  • Gibson CD, Carnell S, Ochner CN, Geliebter A. Neuroimaging, gut peptides and obesity: novel studies of the neurobiology of appetite. J Neuroendocrinol 2010;22(8):833–45.
  • Schur EA, Kleinhans NM, Goldberg J, Buchwald D, Schwartz MW, Maravilla K. Activation in brain energy regulation and reward centers by food cues varies with choice of visual stimulus. Int J Obes (Lond) 2009;33(6):653–61. doi: 10.1038/ijo.2009.56
  • Park BY, Seo J, Park H. Functional brain networks associated with eating behaviors in obesity. Sci Rep 2016;6:23891. doi: 10.1038/srep23891
  • Trivedi BP. Neuroscience: dissecting appetite. Nature 2014;508(7496):S64–5. doi: 10.1038/508S64a
  • Bolo NR, Musen G, Simonson DC, Nickerson LD, Flores VL, Siracusa T, et al. Functional connectivity of insula, basal ganglia, and prefrontal executive control networks during hypoglycemia in type 1 diabetes. J Neurosci 2015;35(31):11012–23. doi: 10.1523/JNEUROSCI.0319-15.2015
  • Chen Y, Liu Z, Zhang J, Tian G, Li L, Zhang S, et al. Selectively disrupted functional connectivity networks in type 2 diabetes mellitus. Front Aging Neurosci 2015;7:233.
  • Treue S. Visual attention: the where, what, how and why of saliency. Curr Opin Neurobiol 2003;13(4):428–32. doi: 10.1016/S0959-4388(03)00105-3
  • Gable PA, Harmon-Jones E. Approach-motivated positive affect reduces breadth of attention. Psychol Sci 2008;19(5):476–82. doi: 10.1111/j.1467-9280.2008.02112.x
  • Uddin LQ. Salience processing and insular cortical function and dysfunction. Nat Rev Neurosci 2015;16(1):55–61. doi: 10.1038/nrn3857
  • Garcia-Garcia I, Jurado MA, Garolera M, Segura B, Sala-Llonch R, Marques-Iturria I, et al. Alterations of the salience network in obesity: a resting-state fMRI study. Hum Brain Mapp 2013;34(11):2786–97. doi: 10.1002/hbm.22104
  • Kullmann S, Pape AA, Heni M, Ketterer C, Schick F, Haring HU, et al. Functional network connectivity underlying food processing: disturbed salience and visual processing in overweight and obese adults. Cereb Cortex 2013;23(5):1247–56. doi: 10.1093/cercor/bhs124
  • Smeets PA, de Graaf C, Stafleu A, van Osch MJ, Nievelstein RA, van der Grond J. Effect of satiety on brain activation during chocolate tasting in men and women. Am J Clin Nutr 2006;83(6):1297–305. doi: 10.1093/ajcn/83.6.1297
  • Varlamov O, Bethea CL, Roberts CT, Jr. Sex-specific differences in lipid and glucose metabolism. Front Endocrinol (Lausanne) 2014;5:241.
  • Woods SC, Seeley RJ, Porte D, Jr, Schwartz MW. Signals that regulate food intake and energy homeostasis. Science 1998;280(5368):1378–83. doi: 10.1126/science.280.5368.1378
  • Garcia-Garcia I, Jurado MA, Garolera M, Marques-Iturria I, Horstmann A, Segura B, et al. Functional network centrality in obesity: a resting-state and task fMRI study. Psychiatry Res 2015;233(3):331–8. doi: 10.1016/j.pscychresns.2015.05.017
  • Lips MA, Wijngaarden MA, van der Grond J, van Buchem MA, de Groot GH, Rombouts SA, et al. Resting-state functional connectivity of brain regions involved in cognitive control, motivation, and reward is enhanced in obese females. Am J Clin Nutr 2014;100(2):524–31. doi: 10.3945/ajcn.113.080671
  • Marques-Iturria I, Scholtens LH, Garolera M, Pueyo R, Garcia-Garcia I, Gonzalez-Tartiere P, et al. Affected connectivity organization of the reward system structure in obesity. Neuroimage 2015;111:100–6. doi: 10.1016/j.neuroimage.2015.02.012
  • Stoeckel LE, Weller RE, Cook EW III, Twieg DB, Knowlton RC, Cox JE. Widespread reward-system activation in obese women in response to pictures of high-calorie foods. Neuroimage 2008;41(2):636–47. doi: 10.1016/j.neuroimage.2008.02.031
  • Wijngaarden MA, Veer IM, Rombouts SA, van Buchem MA, Willems van Dijk K, Pijl H, et al. Obesity is marked by distinct functional connectivity in brain networks involved in food reward and salience. Behav Brain Res 2015;287:127–34. doi: 10.1016/j.bbr.2015.03.016
  • Cui Y, Jiao Y, Chen YC, Wang K, Gao B, Wen S, et al. Altered spontaneous brain activity in type 2 diabetes: a resting-state functional MRI study. Diabetes 2014;63(2):749–60. doi: 10.2337/db13-0519
  • Cui Y, Jiao Y, Chen HJ, Ding J, Luo B, Peng CY, et al. Aberrant functional connectivity of default-mode network in type 2 diabetes patients. Eur Radiol 2015;25(11):3238–46. doi: 10.1007/s00330-015-3746-8
  • Cui Y, Li SF, Gu H, Hu YZ, Liang X, Lu CQ, et al. Disrupted brain connectivity patterns in patients with type 2 diabetes. AJNR Am J Neuroradiol 2016;37(11):2115–22. doi: 10.3174/ajnr.A4858