Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 23, 2020 - Issue 5
288
Views
12
CrossRef citations to date
0
Altmetric
Articles

Effect of catechins and high-temperature-processed green tea extract on scavenging reactive oxygen species and preventing Aβ1–42 fibrils’ formation in brain microvascular endothelium

, ORCID Icon, , , &

References

  • Filley C. Alzheimer’s disease: it’s irreversible but not untreatable. Geriatrics 1995;50(7):18–23.
  • Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 2007;3(3):186–91. doi: 10.1016/j.jalz.2007.04.381
  • Findeis MA. The role of amyloid β peptide 42 in Alzheimer's disease. Pharmacol Ther 2007;116(2):266–86. doi: 10.1016/j.pharmthera.2007.06.006
  • Burdick D, Soreghan B, Kwon M, Kosmoski J, Knauer M, Henschen A, et al. Assembly and aggregation properties of synthetic Alzheimer’s A4/beta amyloid peptide analogs. J Biol Chem 1992;267(1):546–54.
  • Haass C, Hung AY, Selkoe DJ, Teplow DB. Mutations associated with a locus for familial Alzheimer’s disease result in alternative processing of amyloid beta-protein precursor. J Biol Chem 1994;269(26):17741–8.
  • Ohtsuki S, Terasaki T. Contribution of carrier-mediated transport systems to the blood–brain barrier as a supporting and protecting interface for the brain; importance for CNS drug discovery and development. Pharm Res 2007;24(9):1745–58. doi: 10.1007/s11095-007-9374-5
  • Ronaldson PT, Davis PT. Blood-brain barrier integrity and glial support: mechanisms that can be targeted for novel therapeutic approaches in stroke. Curr Pharm Des 2012;18(25):3624–44. doi: 10.2174/138161212802002625
  • Golden PL, Pollack GM. Blood–brain barrier efflux transport. J Pharm Sci 2003;92(9):1739–53. doi: 10.1002/jps.10424
  • Carrano A, Hoozemans JJ, van der Vies SM, Rozemuller AJ, van Horssen J, de Vries HE. Amyloid beta induces oxidative stress-mediated blood–brain barrier changes in capillary amyloid angiopathy. Antioxid Redox Signal 2011;15(5):1167–78. doi: 10.1089/ars.2011.3895
  • Tsoy A, Shalakhmetova T, Umbayev B, Askarova S. Role of ROS in Aβ42 mediated cell surface P-selectin expression and actin polymerization. Neurol Asia 2014;19(3).
  • Schreibelt G, Musters RJ, Reijerkerk A, de Groot LR, van der Pol SM, Hendrikx EM, et al. Lipoic acid affects cellular migration into the central nervous system and stabilizes blood-brain barrier integrity. J Immunol 2006;177(4):2630–37. doi: 10.4049/jimmunol.177.4.2630
  • Haorah J, Ramirez SH, Schall K, Smith D, Pandya R, Persidsky Y. Oxidative stress activates protein tyrosine kinase and matrix metalloproteinases leading to blood–brain barrier dysfunction. J Neurochem 2007;101(2):566–76. doi: 10.1111/j.1471-4159.2006.04393.x
  • Butterfield DA, Lauderback CM. Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid β-peptide-associated free radical oxidative stress 1, 2. Free Radic Biol Med 2002;32(11):1050–60. doi: 10.1016/S0891-5849(02)00794-3
  • Varadarajan S, Yatin S, Aksenova M, Butterfield DA. Alzheimer's amyloid β-peptide-associated free radical oxidative stress and neurotoxicity. J Struct Biol 2000;130(2–3):184–208. doi: 10.1006/jsbi.2000.4274
  • Ujiie M, Dickstein DL, Carlow DA, Jefferies WA. Blood–brain barrier permeability precedes senile plaque formation in an Alzheimer disease model. Microcirculation 2003;10(6):463–70.
  • Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, et al. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 2002;416(6880):535–39. doi: 10.1038/416535a
  • Hsia AY, Masliah E, McConlogue L, Yu GQ, Tatsuno G, Hu K, et al. Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc Natl Acad Sci 1999;96(6):3228–33. doi: 10.1073/pnas.96.6.3228
  • LI MH, JANG JH, Sun B, SURH YJ. Protective effects of oligomers of grape seed polyphenols against β-amyloid-induced oxidative cell death. Ann N Y Acad Sci 2004;1030(1):317–29. doi: 10.1196/annals.1329.040
  • Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 2001;21(21):8370–7. doi: 10.1523/JNEUROSCI.21-21-08370.2001
  • Thapa A, Jett SD, Chi EY. Curcumin attenuates amyloid-β aggregate toxicity and modulates amyloid-β aggregation pathway. ACS Chem Neurosci 2015;7(1):56–68. doi: 10.1021/acschemneuro.5b00214
  • Henning SM, Niu Y, Lee NH, Thames GD, Minutti RR, Wang H, et al. Bioavailability and antioxidant activity of tea flavanols after consumption of green tea, black tea, or a green tea extract supplement. Am J Clin Nutr 2004;80(6):1558–64. doi: 10.1093/ajcn/80.6.1558
  • Kondo K, Kurihara M, Miyata N, Suzuki T, Toyoda M. Scavenging mechanisms of (-)-epigallocatechin gallate and (-)-epicatechin gallate on peroxyl radicals and formation of superoxide during the inhibitory action. Free Radic Biol Med 1999;27(7):855–63. doi: 10.1016/S0891-5849(99)00133-1
  • Levites Y, Amit T, Mandel S, Youdim MB. Neuroprotection and neurorescue against Aβ toxicity and PKC-dependent release of nonamyloidogenic soluble precursor protein by green tea polyphenol (-)-epigallocatechin-3-gallate. FASEB J 2003;17(8):952–54. doi: 10.1096/fj.02-0881fje
  • Ono K, Yamada M. Antioxidant compounds have potent anti-fibrillogenic and fibril-destabilizing effects for α-synuclein fibrils in vitro. J Neurochem 2006;97(1):105–15. doi: 10.1111/j.1471-4159.2006.03707.x
  • Seo SB, Choe ES, Kim KS, Shim SM. The effect of tobacco smoke exposure on the generation of reactive oxygen species and cellular membrane damage using co-culture model of blood brain barrier with astrocytes. Toxicol Ind Health 2017;33(6):530–36. doi: 10.1177/0748233716687708
  • Kim YM, Jeon YJ, Huh JS, Kim SD, Park KK, Cho M. Effects of enzymatic hydrolysate from seahorse hippocampus abdominalis on testosterone secretion from TM3 Leydig cells and in male mice. Appl Biol Chem 2016;59(6):869–79. doi: 10.1007/s13765-016-0237-9
  • Kwon YK, Choi SJ, Kim CR, Kim JK, Kim YJ, Choi JH, et al. Antioxidant and cognitive-enhancing activities of Arctium lappa. Appl Biol Chem 2016;59(4):553–65. doi: 10.1007/s13765-016-0195-2
  • Levine H. Thioflavine T interaction with synthetic Alzheimer’s disease β-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci 1993;2(3):404–10. doi: 10.1002/pro.5560020312
  • Liu L, Gu L, Ma Q, Zhu D, Huang X. Resveratrol attenuates hydrogen peroxide-induced apoptosis in human umbilical vein endothelial cells. Eur Rev Med Pharmacol Sci 2013;17(1):88–94.
  • Misonou H, Morishima-Kawashima M, Ihara Y. Oxidative stress induces intracellular accumulation of amyloid β-protein (Aβ) in human neuroblastoma cells. Biochem 2000;39(23):6951–9. doi: 10.1021/bi000169p
  • Shelat PB, Chalimoniuk M, Wang JH, Strosznajder JB, Lee JC, Sun AY, et al. Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A2 in cortical neurons. J Neurochem 2008;106(1):45–55. doi: 10.1111/j.1471-4159.2008.05347.x
  • Manczak M, Anekonda TS, Henson E, Park BS, Quinn J, Reddy PH. Mitochondria are a direct site of Aβ accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet 2006;15(9):1437–49. doi: 10.1093/hmg/ddl066
  • Bastianetto S, Ramassamy C, Doré S, Christen Y, Poirier J, Quirion R. The ginkgo biloba extract (EGb 761) protects hippocampal neurons against cell death induced by β-amyloid. Eur J Neurosci 2000;12(6):1882–90. doi: 10.1046/j.1460-9568.2000.00069.x
  • Cao Y, Chu Q, Fang Y, Ye J. Analysis of flavonoids in Ginkgo biloba L. and its phytopharmaceuticals by capillary electrophoresis with electrochemical detection. Anal Bioanal Chem 2002;374(2):294–9. doi: 10.1007/s00216-002-1436-2
  • Hong JT, Ryu SR, Kim HJ, Lee JK, Lee SH, Yun YP, et al. Protective effect of green tea extract on ischemia/reperfusion-induced brain injury in Mongolian gerbils. Brain Res 2001;888(1):11–18. doi: 10.1016/S0006-8993(00)02935-8
  • Hong JT, Ryu SR, Kim HJ, Lee JK, Lee SH, Kim DB, et al. Neuroprotective effect of green tea extract in experimental ischemia-reperfusion brain injury. Brain Res Bull 2000;53(6):743–9. doi: 10.1016/S0361-9230(00)00348-8
  • Lührs T, Ritter C, Adrian M, Riek-Loher D, Bohrmann B, Döbeli H, et al. 3D structure of Alzheimer’s amyloid-β (1–42) fibrils. Proc Natl Acad Sci U S A 2005;102(48):17342–7. doi: 10.1073/pnas.0506723102
  • Nelson R, Sawaya MR, Balbirnie M, Madsen AØ, Riekel C, Grothe R, et al. Structure of the cross-β spine of amyloid-like fibrils. Nature 2005;435(7043):773–8. doi: 10.1038/nature03680
  • Ono K, Yoshiike Y, Takashima A, Hasegawa K, Naiki H, Yamada M. Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer’s disease. J Neurochem 2003;87(1):172–81. doi: 10.1046/j.1471-4159.2003.01976.x
  • Reinke AA, Gestwicki JE. Structure–activity relationships of amyloid beta-aggregation inhibitors based on curcumin: influence of linker length and flexibility. Chem Biol Drug Des 2007;70(3):206–15. doi: 10.1111/j.1747-0285.2007.00557.x
  • Katayama S, Ogawa H, Nakamura S. Apricot carotenoids possess potent anti-amyloidogenic activity in vitro. J Agric Food Chem 2011;59(23):12691–6. doi: 10.1021/jf203654c
  • Ehrnhoefer DE, Bieschke J, Boeddrich A, Herbst M, Masino L, Lurz R, et al. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat Struct Mol Biol 2008;15(6):558–66. doi: 10.1038/nsmb.1437
  • Hudson SA, Ecroyd H, Dehle FC, Musgrave IF, Carver JA. (-)-Epigallocatechin-3-gallate (EGCG) maintains κ-casein in its pre-fibrillar state without redirecting its aggregation pathway. J Mol Biol 2009;392(3):689–700. doi: 10.1016/j.jmb.2009.07.031
  • Bendary E, Francis R, Ali H, Sarwat M, El Hady S. Antioxidant and structure–activity relationships (SARs) of some phenolic and anilines compounds. Ann Agric Sci 2013;58(2):173–81. doi: 10.1016/j.aoas.2013.07.002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.