Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 23, 2020 - Issue 8
938
Views
15
CrossRef citations to date
0
Altmetric
Reviews

The phenylketonuria patient: A recent dietetic therapeutic approach

, ORCID Icon, &

References

  • Scriver CR, Kaufman S. Hyperphenylalaninaemia: phenylalanine hydroxylase deficiency. In: Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Kinzler K, Vogelstein B, (eds). The metabolic and molecular bases of inherited disease, 8th ed. New York: McGrawHill; 2001. p. 1667–724.
  • Mitchell JJ, Trakadis YJ, Scriver CR. Phenylalanine hydroxylase deficiency. Genet Med 2011;13:697–707.
  • Vockley J, Andersson HC, Antshel KM, Braverman NE, Burton BK, Frazier DM, et al. Phenylalanine hydroxylase deficiency: diagnosis and management guideline. Genet Med 2014;16:188–200.
  • Singh RH, Rohr F, Frazier D, Cunningham A, Mofidi S, Ogata B, et al. Recommendations for the nutrition management of phenylalanine hydroxylase deficiency. Genet Med 2014;16:121–31.
  • Ahring K, Belanger-Quintana A, Dokoupil K, Gokmen-Ozel H, Lammardo AM, MacDonald A, et al. Blood phenylalanine control in phenylketonuria: a survey of 10 European centres. Eur J Clin Nutr 2011;65:275–78.
  • Blau N, Bélanger-Quintana A, Demirkol M, Feillet F, Giovannini M, MacDonald A, et al. Management of phenylketonuria in Europe: survey results from 19 countries. Mol Genet Metab 2010;99:109–15.
  • van Wegberg AM, MacDonald A, Ahring K, Quintana AB, Blau N, Bosch AM, et al. The complete European guidelines on phenylketonuria: diagnosis and treatment. Orphanet J Rare Dis 2017;12:162.
  • Guldberg P, Rey F, Zschocke J, Romano V, Francois B, Michiels L, et al. A European multicentre study of phenylalanine hydroxylase deficiency:classification of 105 mutations and a general system for genotype-based prediction of metabolic phenotype. Am J Hum Genet 1998;63:71–79.
  • Blau N, Hennermann JB, Langenbeck U, Lichter-Konecki U. Diagnosis, classification, and genetics of phenylketonuria and tetrahydrobiopterin (BH4) deficiencies. Mol Genet Metab 2011;104:S2–S9.
  • Ahring K, Bélanger-Quintana A, Docoupil K, Gokmen Ozel H, Lammardo AM, MacDonald A, et al. Dietary management practices in phenylketonuria across European centres. Clin Nutr 2009;28:231–36.
  • Rohde C, Mütze U, Weigel JF, Ceglarek U, Thiery J, Kiess W, et al. Unrestricted consumption of fruit and vegetables in phenylketonuria: no major impact on metabolic control. Eur J Clin Nutr 2012;66:633–38.
  • Webster D, Wildgoose J. Tyrosine supplementation for phenylketonuria. Cochrane Database Syst Rev 2010;8:CD001507.
  • Sharman R, Sullivan K, Young R, McGill J. A preliminary investigation of the role of the phenylalanine:tyrosine ratio in children with early and continuously treated phenylketonuria: toward identification of “safe” levels. Dev Neuropsychol 2010;35:57–65.
  • van Spronsen FJ, Van Dijk T, Smit GP, van Rijn M, Reijngoud DJ, Berger R, et al. Large daily fluctuations in plasma tyrosine in treated patients with phenylketonuria. Am J Clin Nutr 1996;64:916–21.
  • Camp KM, Parisi MA, Acosta PB, Berry GT, Bilder DA, Blau N, et al. Phenylketonuria scientific Review Conference: State of the science and future research needs. Mol Genet Metab 2014;112:87–122.
  • European Commission. Foods for Special Medical Purposes. Available at:http://ec.europa.eu/food/food/labellingnutrition/medical/index_en.htm (Last accessed 21st July 2018).
  • MacDonald A, Rylance G, Davies P, Asplin D, Hall SK, Booth IW. Administration of protein substitute and quality of control in phenylketonuria: a randomized study. J Inherit Metab Dis 2003;26:319–26.
  • Rocha JC, van Spronsen FJ, Almeida MF, Ramos E, Guimaraes JT, Borges N. Early dietary treated patients with phenylketonuria can achieve normal growth and body composition. Mol Genet Metab 2013;110:S40–43.
  • Robert M, Rocha JC, van Rijn M, Ahring K, Bélanger-Quintana A, MacDonald A, et al. Micronutrient status in phenylketonuria. Mol Genet Metab 2013;110:S6–16.
  • Pardridge WM. Blood-brain barrier carrier-mediated transport and brain. Metabolism of amino acids. Neurochem Res 1998;23:635–44.
  • Blau N, MacDonald A, van Spronsen F. There is no doubt that the early identification of PKU and prompt and continuous intervention prevents mental retardation in most patients. Mol Genet Metab 2011;104:S1.
  • Gropper SS, Gropper DM, Acosta PB. Plasma amino acid response to ingestion of L-amino acids and whole protein. J Pediatr Gastroenterol Nutr 1993;16:143–50.
  • Fouillet H, Mariotti F, Gaudichon C, Bos C, Tom D. Peripheral and splanchnic metabolism of dietary nitrogen are differently affected by the protein source in humans as assessed by compartmental modeling. J Nutr 2002;132:125–33.
  • Metges CC, El-Khoury AE, Selvaraj AB, Tsay RH, Atkinson A, Regan MM, et al. Kinetics of L-[1-(13)] leucine when ingested with free amino acids, unlabeled or intrinsically labeled casein. Am J Physiol Endocrinol Metab 2000;278:E1000–9.
  • Schoeffer A, Herrmann M-E, Brosicke HG, Monch E. Influence of single dose amino acid mixtures on the nitrogen retention in patients with phenylketonuria. J Nutr Med 1994;4:415–18.
  • Pena MJ, Almeida MF, Dam E, Ahring K, Bélanger-Quintana A, Dokoupil K, et al. Protein substitutes for phenylketonuria in Europe: access and nutritional composition. Eur J Clin Nutr 2016;70:785–89.
  • Evans S, Daly A, MacDonald J, Preece MA, Santra S, Vijay S, et al. The micronutrient status of patients with phenylketonuria on dietary treatment: an ongoing challenge. Ann Nutr Metab 2014;65:42–48.
  • Schulpis KH, Karakonstantakis T, Bartzeliotou A, Karikas GA, Papassotiriou I. The association of serum lipids, lipoproteins and apolipoproteins with selected trace elements and minerals in phenylketonuria patients on diet. Clin Nutr 2004;23:401–7.
  • Schulpis KH, Nounopoulos C, Scarpalezou A, Bouloukos A, Missiou-Tsagarakis S. Serum carnitine level in phenylketonuric children under dietary control in Greece. Acta Paediatr Scand 1990;79:930–34.
  • Schulpis KH, Papastamataki M, Stamou H, Papassotiriou I, Margeli A. The effect of diet on total antioxidant status, ceruloplasmin, transferrin and ferritin serum levels in phenylketonuric children. Acta Paediatr 2010;99:1565–70.
  • Schulpis KH, Karikas GA, Papakonstantinou E. Homocysteine and other vascular risk factors in patients with phenylketonuria on a diet. Acta Pediatr 2002;91:905–9.
  • Stolen LH, Lilje R, Jorgensen JV, Bliksrud YT, Almaas R. High dietary folic acid and high plasma folate in children and adults with phenylketonuria. JIMD Rep 2014;13:83–90.
  • Moseley K, Koch R, Moser AB. Lipid status and long-chain polyunsaturated fatty acid concentrations in adults and adolescents with phenylketonuria on phenylalanine-restricted diet. J Inherit Metab Dis 2002;25:56–64.
  • Agostoni C, Harvie A, McCulloch DL, Demellweek C, Cockburn F, Giovannini M, et al. A randomized trial of long-chain polyunsaturated fatty acid supplementation in infants with phenylketonuria. Dev Med Child Neurol 2006;48:207–12.
  • Willatts P, Forsyth S, Agostoni C, Casaer P, Riva E, Boehm G. Effects of long-chain PUFA supplementation in infant formula on cognitive function in later childhood. Am J Clin Nutr 2013;98:536S–42S.
  • Demirdas S, Coakley KE, Bisschop PH, Hollak CE, Bosch AM, Singh RH. Bone health in phenylketonuria: a systematic review and meta-analysis. Orphanet J Rare Dis 2015;10:17.
  • Rousseau JH, Kleppinger A, Kenny AM. Self-reported dietary intake of omega-3 fatty acids and association with bone and lower extremity function. J Am Geriatr Soc 2009;57:1781–88.
  • Lohner S, Fekete K, Decsi T. Lower n-3 long-chain polyunsaturated fatty acid values in patients with phenylketonuria: a systematic review and meta-analysis. Nutr Res 2013;33:513–20.
  • MacDonald A, Rocha JC, van Rijn M, Feillet F. Nutrition in phenylketonuria. Mol Genet Metab 2011;104:S10–18.
  • Van Calsar SC, Ney DM. Food products made with Glycomacropeptide, a low-phenylalanine whey protein, provide a new alternative to amino Acid-based medical foods for nutrition management of phenylketonuria. J Acad Nutr Diet 2012;112:1201–10.
  • Concolino D, Mascaro I, Moricca MT, Bonapace G, Matalon K, Trapasso J, et al. Long-term treatment of phenylketonuria with a new medical food containing large neutral amino acids. Eur J Clin Nutr 2017;71:51–55.
  • Blau N. Sapropterin dihydrochloride for the treatment of hyperphenylalaninemias. Expert Opin Drug Metab Toxicol 2013;9:1207–18.
  • Bell SM, Wendt DJ, Zhang Y, Taylor TW, Long S, Tsuruda L, et al. Formulation and PEGylation optimization of the therapeutic pegylated phenylalanine ammonia lyase for the treatment of phenylketonuria. PLoS One 2017;12:e0173269.
  • Rouse B, Azen C, Koch R, Matalon R, Hanley W, de la Cruz F, et al. Maternal Phenylketonuria Collaborative Study (MPKUCS) offspring: facial anomalies, malformations, and early neurological sequelae. Am J Med Genet 1997;69:89–95.
  • Andersen AE, Avins L. Lowering brain phenylalanine levels by giving other large neutral amino acids. A new experimental therapeutic approach to phenylketonuria. Arch Neurol 1976;33:684–86.
  • van Spronsen FJ, de Croot MJ, Hoeksma M, Reijngoud DJ, van Rijn M. Large neutral amino acids in the treatment of PKU: from theory to practice. J Inherit Metab Dis 2010;33:671–76.
  • Smith QR. Transport of glutamate and other amino acids at the blood-brain barrier. J Nutr 2000;130:1016S–22S.
  • de Groot MJ, Hoeksma M, Reijngoud DJ, de Valk HW, Paans AM, Sauer PJ, et al. Phenylketonuria: reduced tyrosine brain influx relates to reduced cerebral protein synthesis. Orphanet J Rare Dis 2013;8:133.
  • Yano S, Moseley K, Azen C. Large neutral amino acid supplementation increases melatonin synthesis in phenylketonuria: a new biomarker. J Pediatr 2013;162:999–1003.
  • Schindeler S, Ghosh-Jerath S, Thompson S, Rocca A, Joy P, Kemp A, et al. The effects of large neutral amino acid supplements in PKU: An MRS and neuropsychological study. Mol Genet Metab 2007;91:48–54.
  • Matalon R, Michals-Matalon K, Bhatia G, Burlina AB, Burlina AP, Braga C, et al. Double blind placebo control trial of large neutral amino acids in treatment of PKU: effect on blood phenylalanine. J Inherit Metab Dis 2007;30:153–58.
  • Laclair CE, Ney DM, MacLeod EL, Etzel MR (2009) Purification and use of Glycomacropeptide for nutritional management of phenylketonuria. J Food Sci 2009;74:E199–206.
  • Lim K, van Calsar SC, Nelson KL, Gleason ST, Ney DM. Acceptable low-phenylalanine foods and beverages can be made with Glycomacropeptide from cheese whey for individuals with PKU. Mol Genet Metab 2007;92:176–78.
  • Ney DM, Hull AK, van Calcar SC, Liu X, Etzel MR. Dietary glycomacropeptide supports growth and reduces the concentrations of phenylalanine in plasma and brain in a murine model of phenylketonuria. J Nutr 2008;138:316–22.
  • Solverson P, Murali SG, Litscher SJ, Blank RD, Ney DM. Low bone strength is a manifestation of phenylketonuria in mice and is attenuated by a Glycomacropeptide diet. PLoS ONE 2012;7:e45165.
  • Sawin EA, De Wolfe TJ, Aktas B, Stroup BM, Murali SG, Steele JL, et al. Glycomacropeptide is a prebiotic that reduces Desulfovibrio bacteria, increases cecal short-chain fatty acids, and is anti-inflammatory in mice. Am J Physiol Gastrointest Liver Physiol 2015;309:G590–601.
  • Patel S. Emerging trends in nutraceutical applications of whey protein and its derivatives. J Food Sci Technol 2015;52:6847–58.
  • Ney DM, Stroup BM, Clayton MK, Murali SG, Rice GM, Rohr F, et al. Glycomacropeptide for nutritional management of phenylketonuria: a randomized, controlled, crossover trial. Am J Clin Nutr 2016;104:334–45.
  • Daly A, MacDonald A, Evans S, Chahal S. Glycomacropeptide: can we safely advocate its use in children with PKU? J Inherit Metab Dis 2015;38:S35–39.
  • Zaki OK, El-Wakeel L, Ebeid Y, Ez Elarab HS, Moustafa A, Abdulazim N, et al. The Use of Glycomacropeptide in Dietary Management of Phenylketonuria. J Nutr Metab 2016;2016:2453027.
  • Pinto A, Almeida MF, Ramos PC, Rocha S, Guimas A, Ribeiro R, et al. Nutritional status in patients with phenylketonuria using glycomacropeptide as their major protein source. Eur J Clin Nutr 2017;71:1230–34.
  • Daly A, Evans S, Chahal S, Santra S, MacDonald A. Glycomacropeptide in children with phenylketonuria: does its phenylalanine content affect blood phenylalanine control? J Hum Nutr Diet 2017;30:515–23.
  • Manta-Vogli PD, Schulpis KH. Phenylketonuria dietary management and an emerging development. J Acad Nutr Diet 2018;118:1361–63.
  • El-Hattab AW. Systemic primary carnitine deficiency. In: Adam MP, Ardinger HH, Pagon RA, editors. GeneReviews. Seattle: University of Washington; 2016.
  • Schulpis KH, Papakonstantinou ED, Vlachos GD, Vlachos DG, Antsaklis A, Papassotiriou I, et al. The effect of the mode of delivery on the maternal-neonatal carnitine blood levels and antioxidant status. Clin Chem Lab Med 2008;46:680–86.
  • Mutze U, Beblo S, Kortz L, Matthies C, Koletzko B, Bruegel M, et al. Metabolomics of dietary fatty acid restriction in patients with phenylketonuria. PLoS One 2012;7:e43021.
  • Weigel C, Kiener C, Meier N, Schmid P, Rauh M, Rascher W, et al. Carnitine status in early-treated children, adolescents and young adults with phenylketonuria on low phenylalanine diets. Ann Nutr Metab 2008;53:91–95.
  • Stroup ΒΜ, Nair Ν, Murali SG, Broniowska K, Rohr F, Levy HL, et al. Metabolomic Markers of Essential Fatty Acids, Carnitine, and Cholesterol Metabolism in Adults and Adolescents with Phenylketonuria. J Nutr 2018;148:194–201.
  • Ney DM, Murali SG, Stroup BM, Nair N, Sawin EA, Rohr F, Levy HL. Metabolomic changes demonstrate reduced bioavailability of tyrosine and altered metabolism of tryptophan via the kynurenine pathway with ingestion of medical foods in phenylketonuria. Mol Genet Metab 2017;121:96–103.
  • Daenzer M, Petzke KJ, Bequette BJ, Metges CC. Whole-body nitrogen and splanchnic amino acid metabolism doffer in rats fed mixed diets containing casein or its corresponding amino acid mixture. J Nutr 2001;131:1965–72.
  • Officer DI, Batterham ES, Farrell DJ. Comparison of growth performance and nutrient retention of weaner pigs given diets based on casein, free amino acids or conventional proteins. Br J Nutr 1997;77:731–44.
  • Homer K, Dreummond E, Brennan L. Bioavailability of milk protein-derived bioactive peptides: a glycaemic management perspective. Nutr Res Rev 2016;29:91–101.
  • Krissansen GW. Emerging health properties of whey proteins and their clinical implications. J Am Coll Nutr 2007;26:713S–23S.
  • MacDonald A, Cochrane B, Wopereis H, Loveridge N. Specific prebiotics in a formula for infants with phenylketonuria. Mol Genet Metab 2011;104:S55–59.
  • Hennermann JB, Roloff S, Gellermann J, Vollmer I, Windt E, Vetter B, et al. Chronic kidney disease in adolescent and adult patients with phenylketonuria. J Inherit Metab Dis 2013;36:747–56.
  • van Calcar SC, MacLeod EL, Gleason ST, Etzel MR, Clayton MK, Wolff JA, et al. Improved nutritional management of phenylketonuria by using a diet containing glycomacropeptide compared with amino acids. Am J Clin Nutr 2009;89:1068–77.
  • Ney DM. Does the PKU diet contribute to impaired renal function? J Inherit Metab Dis 2013;36:903–4.
  • Stroup BM, Sawin EA, Murali SG, Binkley N, Hansen KE, Ney DM. Amino Acid Medical Foods Provide a High Dietary Acid Load and Increase Urinary Excretion of Renal Net Acid, Calcium, and Magnesium Compared with Glycomacropeptide Medical Foods in Phenylketonuria. J Nutr Metab 2017:1909101.
  • Solverson P, Murali SG, Brinkman AS, Nelson DW, Clayton MK, Yen CL, et al. Glycomacropeptide, a low-phenylalanine protein isolated from cheese whey, supports growth and attenuates metabolic stress in the murine model of phenylketonuria. Am J Physiol Endocrinol Metab 2012;302:E885–95.
  • Pena MJ, Almeida MF, van Dam E, Ahring K, Belanger-Quintana A, Dokoupil K, et al. Special low protein foods for phenylketonuria: availability in Europe and an examination of their nutritional profile. Orphanet J Rare Dis 2015;10:162.
  • Schulpis KH, Papassotiriou I, Tsakiris S, Vounatsou M, Chrousos GP. Increased plasma adiponectin concentrations in poorly controlled patients with phenylketonuria normalize with strict diet: evidence for catecholamine-mediated adiponectin regulation and a complex effect of phenylketonuria diet on atherogenesis risk factors. Metabolism 2005;54:1350–55.
  • Feillet F, Clarke L, Medi C, Lipson M, Morris AA, Harmatz P, et al. Pharmacokinetics of Sapropterin in Patients with Phenylketonuria. Clin Pharmacokinetics 2008;47:817–25.
  • Lee P, Treacy EP, Crombez E, Wasserstein M, Waber L, Wolff J, et al. Safety and efficacy of 22 weeks of treatment with sapropterin dihydrochloride in patients with phenylketonuria. Am J Med Genet A 2008;146A:2851–59.
  • Trefz FK, Burton BK, Longo N, Casanova MM, Gruskin DJ, Dorenbaum A, et al. Efficacy of sapropterin dihydrochloride in increasing phenylalanine tolerance in children with phenylketonuriia : a phase III randomized, double-blind, placebo-controlled study. J Pediatr 2009;154:700–7.
  • Steinfeld R, Kohlschutter A, Zschocke J, Lindner M, Ullrich K, Lukacs Z. Tetrahydrobiopterin monotherapy for phenylketonuria patients with common mild mutations. Eur J Pediatr 2002;161:403–5.
  • Anjema K, Hofstede FC, Bosch AM, Rubio Gozalbo ME, de Vries MC, Boelen CCA, et al. The neonatal tetrahydrobiopterin loading test in phenylketonuria: what is the predictive value? Orphanet J Rare Dis 2016;11:10.
  • Anjema K, van Rijn M, Hofstede FC, Bosch AM, Hollak CE, Rubio-Gozalbo E, et al. Tetrahydrobiopterin responsiveness in phenylketonuria: prediction with the 48-hour loading test and genotype. Orphanet J Rare Dis 2013;8:103.
  • Singh RH, Jurecki E, Rohr F. Recommendations for personalized dietary adjustments based on patient response to tetrahydrobiopterin (BH4) in phenylketonuria. Top Clin Nutr 2008;23:149–57.
  • Singh RH, Quirk ME, Douglas TD, Brauchla MC. BH4 therapy impacts the nutrition status and intake in children with phenylketonuria: 2-year follow-up. J Inherit Metab Dis 2010;33:689–95.
  • Humphrey M, Nation J, Francis I, Boneh A. Effect of tetrahydropterin on Phe/Tyr ratios and variation in Phe levels in tetrahydropterin responsive PKU patients. Mol Genet Metab 2011;104:89–92.
  • Keil S, Anjema K, van Spronsen FJ, Lambruschini N, Burlina A, Bélanger-Quintana A, et al. Long-term follow-up and outcome of phenylketonuria patients on sapropterin: a retrospective study. Pediatrics 2013;131:e1881–88.
  • Utz JR, Lorentz CP, Markowitz D, Rudser KD, Diethelm-Okita B, Erickson D, et al. START, a double blind, placebo-controlled pharmacogenetic test of responsiveness to sapropterin dihydrochloride in phenylketonuria patients. Mol Genet Metab 2012;105:193–97.
  • Heintz C, Cotton RG, Blau N. Tetrahydrobiopterin, its mode of action on phenylalanine hydroxylase and importance of genotypes for pharmacological therapy of phenylketonuria. Hum Mutat 2013;34:927–36.
  • Burton BK, Adams DJ, Grange DK, Malone JI, Jurecki E, Bausell H, et al. (2011) Tetrahydrobiopterin therapy for phenylketonuria in infants and young children. J Pediatr 2011;158:410–15.
  • Muntau AC, Burlina A, Eyskens F, Freisinger P, De Laet C, Leuzzi V, et al. Efficacy, safety and population pharmacokinetics of sapropterin in PKU patients <4 years: results from the SPARK open-label, multicenter, randomized phase IIIb trial. Orphanet J Rare Dis 2017;12:47.
  • Grange DK, Hillman RE, Burton BK, Yano S, Vockley J, Fong CT, et al. Sapropterin dihydrochloride use in pregnant women with phenylketonuria: an interim report of the PKU MOMS sub-registry. Mol Genet Metab 2014;112:9–16.
  • Hoskins JA, Hollidays SB, Greenway AM. The metabolism of cinnamic acid by healthy and phenylketonuric adults; a kinetic study. Biomed Mass Spectrom 1984;11:296–300.
  • Sarkissian CN, Kang TS, Gamez A, Scriver CR, Stevens RC. Evaluation of orally administered PEGylated phenylalanine ammonia lyase in mice for the treatment of phenylketonuria. Mol Genet Metab 2011;104:249–54.
  • Zori R, Thomas JA, Shur N, Rizzo WB, Decker C, Rosen O, et al. Induction, titration, and maintenance dosing regimen in a phase 2 study of pegvaliase for control of blood phenylalanine in adults with phenylketonuria. Mol Genet Metab 2018 in press.
  • Thomas J, Levy H, Amato S, Vockley J, Zori R, Dimmock D, et al. PRISM investigators. Pegvaliase for the treatment of phenylketonuria: Results of a long-term phase 3 clinical trial program (PRISM). Mol Genet Metab 2018;124:27–38.
  • Prick BW, Hop WC, Duvekot JJ Maternal phenylketonuria and hyperphenylalaninemia in pregnancy: pregnancy complications and neonatal sequelae in untreated and treated pregnancies. Am J Clin Nutr 2012;95:374–82.
  • Teissier R, Nowak E, Assoun M, Mention K, Cano A, Fouilhoux A, et al. Maternal phenylketonuria: low phenylalaninemia might increase the risk of intra uterine growth retardation. J Inherit Metab Dis 2012;35:993–99.
  • Loukas YL, Soumelas GS, Dotsikas Y, Georgiou V, Molou E, Thodi G, et al. Expanded newborn screening in Greece: 30 months of experience. J Inherit Metab Dis 2010;33:S341–48.
  • Koch R, Trefz F, Waisbren S. Psychosocial issues and outcomes in maternal PKU. Mol Genet Metab 2010;99:S68–74.
  • Feillet F, Muntau AC, Debray FG, Lotz-Havla AS, Puchwein-Schwepcke A, Fofou-Caillierez MB, et al. Use of sapropterin dihydrochloride in maternal phenylketonuria. A European experience of eight cases. J Inherit Metab Dis 2014;37:753–62.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.