Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 24, 2021 - Issue 3
360
Views
7
CrossRef citations to date
0
Altmetric
Articles

Aggravated behavioral and neurochemical deficits and redox imbalance in mice with enhanced neonatal iron intake: improvement by biochanin A and role of microglial p38 activation

, , , , &

References

  • Campdelacreu J. Parkinson disease and Alzheimer disease: environmental risk factors. Neurologia. 2014;29(9):541–9. doi: 10.1016/j.nrl.2012.04.001
  • Mori MA, Delattre AM, Carabelli B, Pudell C, Bortolanza M, Staziaki PV, et al. Neuroprotective effect of omega-3 polyunsaturated fatty acids in the 6-OHDA model of Parkinson's disease is mediated by a reduction of inducible nitric oxide synthase. Nutr Neurosci. 2018;21(5):341–51. doi: 10.1080/1028415X.2017.1290928
  • Mata I, Leverenz J, Weintraub D, Trojanowski J, Hurtig H, Van Deerlin V, et al. APOE, MAPT, and SNCA genes and cognitive performance in Parkinson disease. JAMA Neurol. 2014;71(11):1405–12. doi: 10.1001/jamaneurol.2014.1455
  • Ostojic S. Inadequate production of H2 by gut microbiota and Parkinson disease. Trends Endocrinol Metab. 2018;29(5):286–8. doi: 10.1016/j.tem.2018.02.006
  • Akman M, Cebeci D, Okur V, Angin H, Abali O, Akman A. The effects of iron deficiency on infants’ developmental test performance. Acta Paediatr. 2004;93(10):1391–6. doi: 10.1111/j.1651-2227.2004.tb02941.x
  • Wang J, Wu W, Huang H, Li W, Chen H, Yin Y. Biochanin A protects against lipopolysaccharide-induced damage of dopaminergic neurons both In Vivo and In vitro via Inhibition of microglial activation. Neurotox Res. 2016;30(3):486–98. doi: 10.1007/s12640-016-9648-y
  • Alves G, Müller B, Herlofson K, HogenEsch I, Telstad W, Aarsland D, et al. Incidence of Parkinson's disease in Norway: the Norwegian Park West study. J Neurol Neurosurg Psychiatry. 2009;80(8):851–7. doi: 10.1136/jnnp.2008.168211
  • Barnham K, Masters C, Bush A. Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov. 2004;3(3):205–14. doi: 10.1038/nrd1330
  • Junxia X, Hong J, Wenfang C, Ming Q. Dopamine release rather than content in the caudate putamen is associated with behavioral changes in the iron rat model of Parkinson's disease. Exp Neurol. 2003;182(2):483–9. doi: 10.1016/S0014-4886(03)00123-7
  • Kaur D, Yantiri F, Rajagopalan S, Kumar J, Mo J, Boonplueang R, et al. Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson's disease. Neuron. 2003;37(6):899–909. doi: 10.1016/S0896-6273(03)00126-0
  • Nataraj J, Manivasagam T, Thenmozhi AJ, Essa MM. Lutein protects dopaminergic neurons against MPTP-induced apoptotic death and motor dysfunction by ameliorating mitochondrial disruption and oxidative stress. Nutr Neurosci. 2016;19(6):237–46. doi: 10.1179/1476830515Y.0000000010
  • Liu X, Wang T, Liu X, Cai L, Qi J, Zhang P, et al. Biochanin A protects lipopolysaccharide/D-galactosamine-induced acute liver injury in mice by activating the Nrf2 pathway and inhibiting NLRP3 inflammasome activation. Int Immunopharmacol. 2016;38:324–31. doi: 10.1016/j.intimp.2016.06.009
  • Chen H, Jin Z, Li G. Biochanin A protects dopaminergic neurons against lipopolysaccharide-induced damage through inhibition of microglia activation and proinflammatory factors generation. Neurosci Lett. 2007;417(2):112–17. doi: 10.1016/j.neulet.2006.11.045
  • Kaur D, Peng J, Chinta S J, Rajagopalan S, Di Monte D A, Cherny R A, et al. Increased murine neonatal iron intake results in Parkinson-like neurodegeneration with age. Neurobiol Aging. 2007;28(6):907–13. doi: 10.1016/j.neurobiolaging.2006.04.003
  • Guan Q, Wang M, Chen H, Yang L, Yan Z, Wang X. Aging-related 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurochemial and behavioral deficits and redox dysfunction: improvement by AK-7. Exp Gerontol. 2016;82:19–29. doi: 10.1016/j.exger.2016.05.011
  • Yu L, Wang X, Chen H, Yan Z, Wang M, Li Y. Neurochemical and behavior deficits in rats with iron and rotenone co-treatment: role of redox imbalance and neuroprotection by biochanin A. Front Neurosci. 2017;11(657):1–11. doi:10.3389/fnins.2017.00657.
  • Zhang Q, Heng Y, Mou Z, Huang J, Yuan Y, Chen N. Reassessment of subacute MPTP-treated mice as animal model of Parkinson's disease. Acta Pharmacol Sin. 2017;38(10):1317–28. doi: 10.1038/aps.2017.49
  • Muralikrishnan D, Mohanakumar KP. Neuroprotection by bromocriptine against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity in mice. FASEB J. 1998;12(10):905–12. doi: 10.1096/fasebj.12.10.905
  • Chen H, Wang X, Wang M, Yang L, Yan Z, Zhang Y, et al. Behavioral and neurochemical deficits in aging rats with increased neonatal iron intake: Silibinin's neuroprotection by maintaining redox balance. Front Aging Neurosci. 2015;7(206):1–10. doi:10.3389/fnagi.2015.00206.
  • Peskin A, Winterbourn C. A microtiter plate assay for superoxide dismutase using a water-soluble tetrazolium salt (WST-1). Clin Chim Acta. 2000;293(1-2):157–66. doi: 10.1016/S0009-8981(99)00246-6
  • Han J, Plummer J, Liu L, Byrd A, Aschner M, Erikson KM. The impact of obesity on brain iron levels and alpha-synuclein expression is regionally dependent. Nutr Neurosci. 2017;16:1–9.
  • Tan J, Tham C, Israf D, Lee S, Kim M. Neuroprotective effects of biochanin A against glutamate-induced cytotoxicity in PC12 cells via apoptosis inhibition. Neurochem Res. 2013;38(3):512–18. doi: 10.1007/s11064-012-0943-6
  • Cheepsunthorn P, Radov L, Menzies S, Reid J, Connor J. Characterization of a novel brain-derived microglial cell line isolated from neonatal rat brain. Glia. 2001;35(1):53–62. doi: 10.1002/glia.1070
  • Cheng J, Liao Y, Xiao L, Wu R, Zhao S, Chen H, et al. Autophagy regulates MAVS signaling activation in a phosphorylation-dependent manner in microglia. Cell Death Differ. 2017;24(2):276–87. doi: 10.1038/cdd.2016.121
  • Urrutia P, Hirsch E, González-Billault C, Núñez M. Hepcidin attenuates amyloid beta-induced inflammatory and pro-oxidant responses in astrocytes and microglia. J Neurochem. 2017;142(1):140–52. doi: 10.1111/jnc.14005
  • Schneider N, Garcia-Rodenas CL. Early nutritional interventions for brain and cognitive development in preterm infants: a review of the literature. Nutrients. 2017;9(3):187. doi:10.3390/nu9030187.
  • Domellof M, Braegger C, Campoy C, Colomb V, Decsi T, Fewtrell M, et al. Iron requirements of infants and toddlers. J Pediatr Gastroenterol Nutr. 2014;58(1):119–29. doi: 10.1097/MPG.0000000000000206
  • Connor J, Pavlick G, Karli D, Menzies S, Palmer C. A histochemical study of iron-positive cells in the developing rat brain. J Comp Neurol. 1995;355(1):111–23. doi: 10.1002/cne.903550112
  • Fredriksson A, Schroder N, Eriksson P, Izquierdo I, Archer T. Neonatal iron exposure induces neurobehavioural dysfunctions in adult mice. Toxicol Appl Pharmacol. 1999;159(1):25–30. doi: 10.1006/taap.1999.8711
  • Gillies G, Pienaar I, Vohra S, Qamhawi Z. Sex differences in Parkinson's disease. Front Neuroendocrinol. 2014;35(3):370–84. doi: 10.1016/j.yfrne.2014.02.002
  • Bolam J, Pissadaki E. Living on the edge with too many mouths to feed: why dopamine neurons die. Mov Disord. 2012;27(12):1478–83. doi: 10.1002/mds.25135
  • Zucca F, Segura-Aguilar J, Ferrari E, Muñoz P, Paris I, Sulzer D, et al. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson's disease. Prog Neurobiol. 2017;155:96–119. doi: 10.1016/j.pneurobio.2015.09.012
  • Yolland COB, Phillipou A, Castle DJ, Neill E, Hughes ME, Galletly C, et al. Improvement of cognitive function in schizophrenia with N-acetylcysteine: a theoretical review. Nutr Neurosci. 2018:1–10. doi:10.1080/1028415X.2018.1478766.
  • Macedo RC, Bondan EF, Otton R. Redox status on different regions of the central nervous system of obese and lean rats treated with green tea extract. Nutr Neurosci. 2017;22:119–31. doi: 10.1080/1028415X.2017.1356030
  • Kole L, Giri B, Manna S, Pal B, Ghosh S. Biochanin-A, an isoflavon, showed anti-proliferative and anti-inflammatory activities through the inhibition of iNOS expression, p38-MAPK and ATF-2 phosphorylation and blocking NFκB nuclear translocation. Eur J Pharmacol 2011;653(1–3):8–15. doi: 10.1016/j.ejphar.2010.11.026
  • Sandini TM, Reis-Silva TM, Moreira N, Bernardi MM, Lebrun I, Spinosa HS. Effects of isoflavones on behavior, estradiol, glutamate, and GABA levels in intact middle-aged female rats. Nutr Neurosci. 2018:1–12. doi:10.1080/1028415X.2018.1447296.
  • Wang W, Tang L, Li Y, Wang Y. Biochanin A protects against focal cerebral ischemia/reperfusion in rats via inhibition of p38-mediated inflammatory responses. J Neurol Sci. 2015;348(1-2):121–5. doi: 10.1016/j.jns.2014.11.018
  • Khanna S, Stewart R, Gnyawali S, Harris H, Balch M, Spieldenner J, et al. Phytoestrogen isoflavone intervention to engage the neuroprotective effect of glutamate oxaloacetate transaminase against stroke. FASEB J. 2017;31(10):4533–44. doi: 10.1096/fj.201700353
  • Fisher DR, Poulose SM, Bielinski DF, Shukitt-Hale B. Serum metabolites from walnut-fed aged rats attenuate stress-induced neurotoxicity in BV-2 microglial cells. Nutr Neurosci. 2017;20(2):103–9. doi: 10.1179/1476830514Y.0000000150
  • Rojo A, McBean G, Cindric M, Egea J, López M, Rada P, et al. Redox control of microglial function: molecular mechanisms and functional significance. Antioxid Redox Signal. 2014;21(12):1766–801. doi: 10.1089/ars.2013.5745
  • Dou F, Chu X, Zhang B, Liang L, Lu G, Ding J, et al. Erib targeted inhibition of microglia activity attenuates MPP+ induced DA neuron injury through the NF-kappaB signaling pathway. Mol Brain. 2018;11(1):75. doi: 10.1186/s13041-018-0418-z
  • Chen T, Hou R, Xu S, Wu C. Donepezil regulates 1-methyl-4-phenylpyridinium-induced microglial polarization in Parkinson's disease. ACS Chem Neurosci. 2015;6(10):1708–14. doi: 10.1021/acschemneuro.5b00026
  • Bhaskar K, Konerth M, Kokiko Cochran O, Cardona A, Ransohoff R, Lamb B. Regulation of tau pathology by the microglial fractalkine receptor. Neuron. 2010;68(1):19–31. doi: 10.1016/j.neuron.2010.08.023
  • Jalaludeen A M, Ha W T, Lee R, Kim J H, Do J T, Park C, et al. Biochanin A ameliorates arsenic-induced hepato- and hematotoxicity in rats. Molecules. 2016;21(1):69. doi: 10.3390/molecules21010069
  • Dowling S, Regan F, Hughes H. The characterisation of structural and antioxidant properties of isoflavone metal chelates. J Inorg Biochem. 2010;104(10):1091–8. doi: 10.1016/j.jinorgbio.2010.06.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.