Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 25, 2022 - Issue 4
425
Views
0
CrossRef citations to date
0
Altmetric
Articles

Is vagal stimulation or inhibition benefit on the regulation of the stomach brain axis in obesity?

, , , &

References

  • Imatake K, Matsui T, Moriyama M. The effect and mechanism of action of capsaicin on gastric acid output. J Gastroenterol. 2009;44(5):396–404.
  • Brunicardi FC, Shavelle D, Andersen D. Neural regulation of the endocrine pancreas. Int J Pancreatol. 1995;18(3):177–95.
  • Bailey P, Bremer FA. Sensory cortical representation of the vagus nerve. J. Neurophysiol. 1938;1:405–412.
  • Zabara J. Peripheral control of hypersynchronous discharge inepilepsy. Electroencephalography. 1985;61:162.
  • Ogbonnaya S. Chandrasekaran kaliaperumal vagal nerve stimulator: Evolving trends. Journal of Natural Science. Biology and Medicine. 2013;4:8–13.
  • Camilleri M, Toouli J, Herrera MF, et al. Intra-abdominal vagal blocking (VBLOC therapy): clinical results with a new implantable medical device. Surgery. 2008;143:723–31.
  • Shikora SA, Bergenstal R, Bessler M, et al. Implantable gastric stimulation for the treatment of clinically severe obesity: results of the SHAPE trial. Surg Obes Relat Dis. 2009;5:31–7.
  • Sobocki J, Krolczyk G, HermanRM MA, Thor PJ. Influence of vagal nerve stimulation on food intake and body weight. results of experimental studies. J Physiol Pharmacol. 2005;56:27–33.
  • Val-Laillet D, Biraben A, Randuineau G, Malbert CH. Chronic vagus nerve stimulation decreased weight gain, food consumption andsweet craving in adult obese minipigs. Appetite. 2010;55(2):245–52.
  • Laskiewicz J, Królczyk G, Zurowski G, Sobocki J, Matyja A, Thor PJ. Effects of vagal neuromodulation and vagotomy on control of food intake and body weight in rats. J Physiol Pharmacol. 2003;54(4):603–610.
  • Sergeev VG, Akmaev IG. Effects of vagotomy and bacterial lipopolysaccharide on food intake and expression of cyclooxygenase-2 mRNA in rat brain vessels. Bull Exp Biol Med. 2000;129(6):553–555.
  • Furness JB, Koopmans HS, Robbins HL, Clerc N, Tobin JM, Morris MJ. Effects of vagal andsplanchnic section on food intake, weight, serum leptin and hypothalamic neuropeptide Y in rat. Autonom Neurosci Basic Clin. 2001;92:28–36.
  • Bekar E, Altunkaynak BZ, Balcı K, Aslan G, Ayyıldız M, Kaplan S. Effects of high fat diet induced obesity on peripheral nerve regeneration and levels of GAP 43 and TGF-β in rats. Biotech Histochem. 2014;89(6):446–56.
  • Alkan I, Altunkaynak BZ, Altun G, Erener E. The investigation of the effects of topiramate on the hypothalamic levels of fat mass/obesity-associated protein and neuropeptide Y in obese female rats. 2017; 15:1-10.
  • Altunkaynak BZ, Onger MÖ, AltunkaynakME AE, Canan S. A Brief introduction to stereology and sampling strategies: Basic concepts of stereology. NeuroQuantology. 2012;10(1):31–43.
  • Koç G E, Kaplan S, Altun G, Gümüş H, Gülsüm Deniz Ö, Aydin I, et al. Neuroprotective effects of melatonin and omega-3 on hippocampal cells prenatally exposed to 900 MHz electromagnetic fields. Int J Radiat Biol. 2016 Oct;92(10):590–595.
  • Ulubay M, Yahyazadeh A, Deniz ÖG, Kıvrak EG, Altunkaynak BZ, Erdem G, Kaplan S. Effects of prenatal 900 MHz electromagnetic field exposures on the histology of rat kidney. Int. J. Radiat. Biol. 2015;91:35–41.
  • Ayrancı E, Altunkaynak BZ, Aktaş A, Rağbetli MÇ, Kaplan S. Prenatal exposure of diclofenac sodium affects morphology but not axon number of the median nerve of rats. Folia Neuropathol. 2013;51(1):76–86.
  • Kiki I, Altunkaynak BZ, Altunkaynak ME, Vuraler O, Unal D, Kaplan S. Effect of high fat diet on the volume of liver and quantitative feature of Kupffer cells in the female rat: a stereological and ultrastructural study. Obes Surg. 2007;17(10):1381–8.
  • Aslan H, Altunkaynak BZ, Altunkaynak ME, Vuraler O, Kaplan S, Unal B. Effect of a high fat diet on quantitative features of adipocytes in the omentum: an experimental, stereological and ultrastructural study. Obes Surg. 2006 Nov;16(11):1526–34.
  • Logue J, Murray HM, Welsh P, Shepherd J, Packard C, Macfarlane P, et al. Obesity is associated with fatal coronary heart disease independently of traditional risk factors and deprivation. Heart. 2011;97:564–568.
  • Zimmerman M, Hrabosky JI, Francione C, Young D, Chelminski I, Dalrymple K, Galione JN. Impact of obesity on the psychometric properties of the diagnostic and statistical manual of mental disorders, fourth edition criteria for major depressive disorder. Compr Psychiatry. 2011;52:146–150.
  • Lutz TA, Woods SC. Overview of animal models of obesity. Curr Protoc Pharmacol. 2012;5:61. doi:https://doi.org/10.1002/0471141755.ph0561s58.
  • Dell P, Olson R. Thalamic, cortical and cerebella projections of vagalvisceral afferents. C.R. Seances Soc Biol Fil. 1951;145:1084–1088.
  • Burneo JG, Faught E, Knowlton R, Morawetz R, Kuzniecky R. Weight loss associated with vagus nerve stimulation. Neurology. 2002;59:463–464.
  • Pardo JV, SheikhSA, Kuskowski MA, Surerus-Johnson C, Hagen MC, Lee, JT, Rittberg BR, Adson DE. Weight loss during chronic, cervical vagus nerve stimulation in depressed patients with obesity. Int. J. Obes. 2007;31:1756-1759.
  • Stephens TW, Basinski M, Bristow PK, Bue-Valleskey JM, Burgett SG, Craft L, et al. The role of neuropeptide Y in the antiobesity action of the obese gene product. Nature. 1995;377:530–532.
  • Sobocki J, Fourtanier G, Estany J, Otal P. Does vagal nerve stimulation affect body composition and metabolism? Experimental study of a new potential technique in bariatric surgery. Surgery. 2006;139(2):209–216.
  • Sobocki J, Thor PJ, Uson J, Diaz-Guemes I, Lipinski M, Calles C, et al. Microchip vagal pacing reduces food intake and body mass. Hepatogastroenterology. 2001;48(42):1783–1787.
  • Sarr MG, Billington CJ, Brancatisano R, Brancatisano A, Toouli J, Kow L, The EMPOWER study group, et al. The EMPOWER study: Randomized, prospective, double-blind, multicenter trial of vagal blockade to induce weight loss in morbid obesity. Obes Surg. 2012; doi:https://doi.org/10.1007/s11695-012-0751-8.
  • Debas HT, Carvajal SH. Vagal regulation of acid secretion and gastrin release. Yale J Biol Med. 1994;67(3–4):145–51.
  • Chen D, Zhao CM. Genetically engineered mice: A new paradigm to study gastric physiology. Curr Opin Gastroenterol. 2007;23(6):602–6.
  • Johannessen H, Revesz D, Kodama Y, Cassie N, et al. Vagal blocking for obesity control: A possible mechanism-of-action. Obes Surg. 2017;27:177–185.
  • Gold RM. Hypothalamic obesity: The myth of the ventromedial nucleus. Science. 1973;182:488–490.
  • Mieda M, Williams SC, Richardson JA, Tanaka K, Yanagisawa M. The dorsomedial hypothalamic nucleus as a putative food-entrainable circadian pacemaker. Proc Natl Acad Sci U S A. 2006;103(32):12150–12155.
  • Gooley JJ, Schomer A, Saper CB. The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms. Nat Neurosci. 2006;9(3):398–407.
  • Ferrari B, Arnold M, Carr RD, Langhans W, Pacini G, Bódvarsdottir TB, et al. Subdiaphragmatic vagal deafferentation affects body weight gain and glucose metabolism in obese male Zucker (fa/fa) rats. Am J Physiol Regul Integr Comp Physiol. 2005;289:R1027–R1034.
  • Jordan PH, Thornby J. Twenty years after parietal cell vagotomy or selective vagotomy antrectomy for treatment of duodenal ulcer. Final report. Ann. Surg. 1994;220(3):283–93.
  • Lygidakis NJ. Posterior truncal vagotomy and anterior curve superficial seromyotomy as an alternative for the surgical management of chronic ulcer of the duodenum. Surgery. Gynecology and Obstetrics. 1984;158(3):251–4.
  • Lubaczeuski C, Balbo SL, Ribeiro RA, Vettorazzi JF, Santos- Silva JC, Carneiro EM, Bonfleur ML. Vagotomy ameliorates islet morphofunction and body metabolic homeostasis in MSG-obese rats. Braz J Med Biol Res. 2015;48:447–57. doi:https://doi.org/10.1590/1414-431X20144340.
  • Kral JG. Effects of truncal vagotomy on body weight and hyperinsulinemia in morbid obesity. Am J Clin Nutr. 1980;33:416–419.
  • Balbo SL, Ribeiro RA, Mendes MC, et al. Vagotomy diminishes obesity in cafeteria rats by decreasingcholinergic potentiation of insulin release. J Physiol Biochem. 2016;72:625–633.
  • Thaler JP, Yi CX, Schur EA, Guyenet SJ, Hwang BH, Dietrich MO, et al. Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest. 2012;122(1):153–62. doi:https://doi.org/10.1172/JCI59660. Epub 2011 Dec 27.
  • Taner D. Fonksiyonel Nöroanatami. Ankara: METU Press; 2005.
  • Lustig RH. Hypothalamic obesity: Causes, consequences, treatment. Pediatr Endocrinol Rev. 2008;6(2):220–7.
  • Kaplan JM, Siemers WH, Smedh U, Schwartz GJ, Grill HJ. Gastric branch vagotomyAnd gastric emptying during and after intragastric infusion of glucose. Am J Physiol. 1997;273:1786–92.
  • Wickbom J, Herrington MK, Permert J, Jansson A, Arnelo U. Gastric emptying in response to IAPP and CCK in rats with subdiaphragmatic afferent vagotomy. Regul Pept. 2008;148:21–25.
  • Moran TH, Baldessarini AR, Salorio CF, Lowery T, Schwartz GJ. Vagal afferent andcontributions to the inhibition of food intake by cholecystokinin. Am J Physiol. 1997;272:1245–51.
  • Raybould HE, Holzer H. Secretin inhibits gastric emptying in rats via a capsaicinsensitive vagal afferent pathway. Eur J Pharmacol. 1993;250:165–7.
  • Wang Z, Zheng H, Berthoud HR. Funtional vagal input to chemically identified neurons in pancreatic ganglia as revealed by Fos expression. Am J Physiol. 1999;277:958–64.
  • Laorden ML, Nunez C, Almela P, Milanes MV. Morphine withdrawal- induced c-fos expression in the hypothalamic paraventricular nucleus is dependent on the activation of catecholaminergic neurones. J Neurochem. 2002;83:132–140.
  • Zheng H, Li YF, Weiss M, Mayhan GW, Patel PK. Neuronal expression of fos protein in the forebrain of diabetic rats. Brain Res. 2002;956:268–275.
  • Navaratnam V, Jacques TS, Skepper JN. Ultrastructural and cytochemical study of neurones in the ratdorsal motor nucleus of the vagus after axon crush. Microsc Res Tech. 1998;42:334–344.
  • Phillips RJ, Baronowsky EA, Powley TL. Long-term regeneration of abdominal vagus: efferents fail while afferents succeed. J Comp Neurol. 2003;455:222–237.
  • Phillips RJ, Baronowsky EA, Powley TL. Regenerating vagal afferents reinnervate gastrointestinal tract smooth muscle of the rat. J Comp Neurol. 2000;421:325–346.
  • Perseghin G, Ghosh S, Gerow K, et al. Metabolic defects in lean nondiabetic offspring of NIDDM parents: A cross-sectional study. Diabetes. 1997;46:1001–1009.
  • Hauner H. Secretory factors from human adipose tissue and their functional role. Proc Nutr Soc. 2005;64:163–169.
  • Fujioka S, Matsuzawa Y, Tokunaga K, Tarui S. Contribution of intra-abdominal fat accumulation to the impairment of glucose and lipid metabolism in human obesity. Metabolism. 1987;36:54–59.
  • Chatterjee S. Sphingolipids in atherosclerosis and vascular biology. Arterioscler, Thromb, Vasc Biol. 1998;18:1523–1533.
  • Pettus BJ, Chalfant CE, Hannun YA. Sphingolipids in inflammation: roles and implications. Curr Mol Med. 2004;4:405–418.
  • Samad F, Hester KD, Yang G, Hannun YA, Bielawski J. Altered adipose and plasma sphingolipid metabolism in obesity. Diabetes. 2006;55:2579–2587.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.