Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 25, 2022 - Issue 5
463
Views
1
CrossRef citations to date
0
Altmetric
Articles

Brain site-specific regulation of hedonic intake by orexin and DYN peptides: role of the PVN and obesity

, , , , , , ORCID Icon & ORCID Icon show all

References

  • Berridge KC, Ho CY, Richard JM, DiFeliceantonio AG. The tempted brain eats: pleasure and desire circuits in obesity and eating disorders. Brain Res. 2010;1350:43–64.
  • Morton GJ, Meek TH, Schwartz MW. Neurobiology of food intake in health and disease. Nat Rev Neurosci. 2014;15(6):367–78.
  • Rossi MA, Stuber GD. Overlapping brain circuits for homeostatic and hedonic feeding. Cell Metab. 2018;27(1):42–56.
  • Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci. 1998;18(23):9996–10015.
  • Ammoun S, Holmqvist T, Shariatmadari R, Oonk HB, Detheux M, Parmentier M, et al. Distinct recognition of OX1 and OX2 receptors by orexin peptides. J Pharmacol Exp Ther. 2003;305(2):507–14.
  • Muschamp JW, Hollander JA, Thompson JL, Voren G, Hassinger LC, Onvani S, et al. Hypocretin (orexin) facilitates reward by attenuating the antireward effects of its cotransmitter dynorphin in ventral tegmental area. Proc Natl Acad Sci U S A. 2014;111(16):E1648–55.
  • Terrill SJ, Hyde KM, Kay KE, Greene HE, Maske CB, Knierim AE, et al. Ventral tegmental area orexin 1 receptors promote palatable food intake and oppose postingestive negative feedback. Am J Physiol Regul Integr Comp Physiol. 2016;311(3):R592–9.
  • Matzeu A, Kallupi M, George O, Schweitzer P, Martin-Fardon R. Dynorphin counteracts orexin in the paraventricular nucleus of the thalamus: cellular and behavioral evidence. Neuropsychopharmacology. 2018;43(5):1010–20.
  • Jin T, Jiang Z, Luan X, Qu Z, Guo F, Gao S, et al. Exogenous orexin-A microinjected into central nucleus of the amygdala modulates feeding and gastric motility in rats. Front Neurosci. 2020;14:274.
  • Funato H, Tsai A, Willie JT, Kisanuki Y, Williams SC, Sakurai T, et al. Enhanced orexin receptor-2 signaling prevents diet-induced obesity and improves leptin sensitivity. Cell Metab. 2009;9(1):64–76.
  • Cristino L, Busetto G, Imperatore R, Ferrandino I, Palomba L, Silvestri C, et al. Obesity-driven synaptic remodeling affects endocannabinoid control of orexinergic neurons. Proc Natl Acad Sci U S A. 2013;110(24):E2229–38.
  • Wee S, Koob GF. The role of the dynorphin-kappa opioid system in the reinforcing effects of drugs of abuse. Psychopharmacology (Berl). 2010;210(2):121–35.
  • Merg F, Filliol D, Usynin I, Bazov I, Bark N, Hurd YL, et al. Big dynorphin as a putative endogenous ligand for the kappa-opioid receptor. J Neurochem. 2006;97(1):292–301.
  • Zhou L, Stahl EL, Lovell KM, Frankowski KJ, Prisinzano TE, Aubé J, et al. Characterization of kappa opioid receptor mediated, dynorphin-stimulated [35S]GTPγS binding in mouse striatum for the evaluation of selective KOR ligands in an endogenous setting. Neuropharmacology. 2015;99:131–41.
  • Gomes I, Sierra S, Lueptow L, Gupta A, Gouty S, Margolis EB, et al. Biased signaling by endogenous opioid peptides. Proc Natl Acad Sci U S A. 2020;117(21):11820–8.
  • Taha SA. Preference or fat? Revisiting opioid effects on food intake. Physiol Behav. 2010;100(5):429–37.
  • Nogueiras R, Romero-Pico A, Vazquez MJ, Novelle MG, Lopez M, Dieguez C. The opioid system and food intake: homeostatic and hedonic mechanisms. Obes Facts. 2012;5(2):196–207.
  • Bodnar RJ. Endogenous opioids and feeding behavior: A decade of further progress (2004-2014). A Festschrift to Dr. Abba Kastin. Peptides. 2015;72:20–33.
  • Gac L, Butterick TA, Duffy CM, Teske JA, Perez-Leighton CE. Role of the non-opioid dynorphin peptide des-Tyr-dynorphin (DYN-A2-17) in food intake and physical activity, and its interaction with orexin-A. Peptides. 2016;76:14–8.
  • Alvarez B, Barrientos T, Gac L, Teske JA, Perez-Leighton CE. Effects on hedonic feeding, energy expenditure and balance of the Non-opioid peptide DYN-A2-17. Neuroscience. 2018;371:337–45.
  • Sakamoto K, Okahashi T, Matsumura S, Okafuji Y, Adachi S, Tsuzuki S, et al. The opioid system majorly contributes to preference for fat emulsions but not sucrose solutions in mice. Biosci Biotechnol Biochem. 2015;79(4):658–63.
  • Morales I, Font L, Currie PJ, Pastor R. Involvement of opioid signaling in food preference and motivation: studies in laboratory animals. Prog Brain Res. 2016;229:159–87.
  • Alvarado-Banuelos M, Barrios De Tomasi E, Juarez J. Changes in the incentive value of food after naltrexone treatment depend on a differential preference for a palatable food in male rats. Nutr Neurosci. 2017;20(7):416–23.
  • Chou TC, Lee CE, Lu J, Elmquist JK, Hara J, Willie JT, et al. Orexin (hypocretin) neurons contain dynorphin. J Neurosci. 2001;21(19):Rc168.
  • Wang C, Han X, Guo F, Sun X, Luan X, Xu L. Orexin-A signaling in the paraventricular nucleus modulates spontaneous firing of glucose-sensitive neurons and promotes food intake via the NPY pathway in rats. Biochem Biophys Res Commun. 2018;505(1):162–7.
  • Czyzyk TA, Fau NR, Lockwood JF, et al. kappa-Opioid receptors control the metabolic response to a high-energy diet in mice. FASEB J. 2010;24(4):1151–9.
  • Perez-Leighton CE, Boland K, Teske JA, Billington C, Kotz CM. Behavioral responses to orexin, orexin receptor gene expression, and spontaneous physical activity contribute to individual sensitivity to obesity. Am J Physiol Endocrinol Metab. 2012;303(7):E865–74.
  • Mella R, Schmidt CB, Romagnoli PP, Teske JA, Perez-Leighton C. The food environment, preference, and experience modulate the effects of Exendin-4 on food intake and reward. Obesity (Silver Spring). 2017;25(11):1844–51.
  • Gac L, Kanaly V, Ramirez V, Teske JA, Pinto MP, Perez-Leighton CE. Behavioral characterization of a model of differential susceptibility to obesity induced by standard and personalized cafeteria diet feeding. Physiol Behav. 2015;152(Pt A):315–22.
  • Sakurai T. The role of orexin in motivated behaviours. Nat Rev Neurosci. 2014;15(11):719–31.
  • Matzeu A, Martin-Fardon R. Drug seeking and relapse: new evidence of a role for orexin and dynorphin co-transmission in the paraventricular nucleus of the thalamus. Front Neurol. 2018;9:720.
  • Rothman RB, Bykov V, Reid A, De Costa BR, Newman AH, Jacobson AE, et al. A brief study of the selectivity of norbinaltorphimine, (-)-cyclofoxy, and (+)-cyclofoxy among opioid receptor subtypes in vitro. Neuropeptides. 1988;12(3):181–7.
  • Takemori AE, Ho BY, Naeseth JS, Portoghese PS. Nor-binaltorphimine, a highly selective kappa-opioid antagonist in analgesic and receptor binding assays. J Pharmacol Exp Ther. 1988;246(1):255–8.
  • Munro TA, Huang XP, Inglese C, Perrone MG, Van't Veer A, Carroll FI, et al. Selective kappa opioid antagonists nor-BNI, GNTI and JDTic have low affinities for non-opioid receptors and transporters. Plos One. 2013;8(8):e70701.
  • Levine AS, Grace M, Billington CJ, Portoghese PS. Nor-binaltorphimine decreases deprivation and opioid-induced feeding. Brain Res. 1990;534(1–2):60–4.
  • Kiwaki K, Kotz CM, Wang C, et al. Orexin A (hypocretin 1) injected into hypothalamic paraventricular nucleus and spontaneous physical activity in rats. Am J Physiol Endocrinol Metab. 2004;286(4):E551–9.
  • Bodnar RJ. Endogenous opiates and behavior: 2018. Peptides. 2020;132:170348.
  • Castro DC, Berridge KC. Opioid and orexin hedonic hotspots in rat orbitofrontal cortex and insula. Proc Natl Acad Sci U S A. 2017;114(43):E9125–e34.
  • Hall KD, Ayuketah A, Brychta R, Cai H, Cassimatis T, Chen KY, et al. Ultra-processed diets cause excess calorie intake and weight gain: an inpatient randomized controlled trial of ad libitum food intake. Cell Metab. 2019;30(1):67–77.e3.
  • Sims EK, Hatanaka M, Morris DL, et al. Divergent compensatory responses to high-fat diet between C57BL6/J and C57BLKS/J inbred mouse strains. Am J Physiol Endocrinol Metab. 2013;305(12):E1495–511.
  • Castro DC, Terry RA, Berridge KC. Orexin in rostral hotspot of nucleus accumbens enhances sucrose ‘liking’ and intake but scopolamine in caudal shell shifts ‘liking’ toward ‘disgust’ and ‘fear’. Neuropsychopharmacology. 2016;41(8):2101–11.
  • Kringelbach ML. The human orbitofrontal cortex: linking reward to hedonic experience. Nat Rev Neurosci. 2005;6(9):691–702.
  • Suzuki S, Cross L, O'Doherty JP. Elucidating the underlying components of food valuation in the human orbitofrontal cortex. Nat Neurosci. 2017;20(12):1780–6.
  • Lewis SR, Ahmed S, Dym C, Khaimova E, Kest B, Bodnar RJ. Inbred mouse strain survey of sucrose intake. Physiol Behav. 2005;85(5):546–56.
  • Jennings JH, Ung RL, Resendez SL, Stamatakis AM, Taylor JG, Huang J, et al. Visualizing hypothalamic network dynamics for appetitive and consummatory behaviors. Cell. 2015;160(3):516–27.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.