Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 25, 2022 - Issue 12
3,273
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Early life Western diet-induced memory impairments and gut microbiome changes in female rats are long-lasting despite healthy dietary intervention

ORCID Icon, , , , , , & show all

References

  • Wang Y, Guglielmo D, Welsh JA. Consumption of sugars, saturated fat, and sodium among US children from infancy through preschool age, NHANES 2009-2014. Am J Clin Nutr. 2018;108:868–77. doi:10.1093/ajcn/nqy168.
  • Neri D, Martinez-Steele E, Monteiro CA, Levy RB. Consumption of ultra-processed foods and its association with added sugar content in the diets of US children, NHANES 2009-2014. Pediatr Obes. 2019;14:e12563. doi:10.1111/ijpo.12563
  • Wang J, Shang L, Light K, O’Loughlin J, Paradis G, Gray-Donald K. Associations between added sugar (solid vs. liquid) intakes, diet quality, and adiposity indicators in Canadian children. Applied Physiology, Nutrition, and Metabolism. 2015.
  • Costa CS, Del-Ponte B, Assunção MCF, Santos IS. Consumption of ultra-processed foods and body fat during childhood and adolescence: a systematic review. Public Health Nutrition. 2018;21:148–59. doi:10.1017/S1368980017001331
  • Gallagher C, Moschonis G, Lambert KA, Karaglani E, Mavrogianni C, Gavrili S, et al. Sugar-sweetened beverage consumption is associated with visceral fat in children. Br J Nutr. 2021: 819–27.
  • Ambrosini GL, Huang R-C, Mori TA, Hands BP, O’Sullivan TA, de Klerk NH, et al. Dietary patterns and markers for the metabolic syndrome in Australian adolescents. Nutrition, Metabolism and Cardiovascular Diseases. 2010;20:274–83. doi:10.1016/j.numecd.2009.03.024
  • Mager DR, Mazurak V, Rodriguez-Dimitrescu C, Vine D, Jetha M, Ball G, et al. A meal high in saturated fat evokes postprandial dyslipemia, hyperinsulinemia, and altered lipoprotein expression in obese children with and without nonalcoholic fatty liver disease. JPEN J Parenter Enteral Nutr. 2013;37:517–28. doi:10.1177/0148607112467820
  • Francis H, Stevenson R. The longer-term impacts of Western diet on human cognition and the brain. Appetite. 2013;63:119–28. doi:10.1016/j.appet.2012.12.018
  • Noble EE, Kanoski SE. Early life exposure to obesogenic diets and learning and memory dysfunction. Curr Opin Behav Sci. 2016;9:7–14. doi:10.1016/j.cobeha.2015.11.014
  • Reichelt AC. Adolescent maturational transitions in the prefrontal cortex and dopamine signaling as a risk factor for the development of obesity and high Fat/high sugar diet induced cognitive deficits. Front Behav Neurosci. 2016;10:189. doi:10.3389/fnbeh.2016.00189
  • Tsan L, Décarie-Spain L, Noble EE, Kanoski SE. Western diet consumption during development: setting the stage for neurocognitive dysfunction. Front. Neurosci. 2021;15. doi:10.3389/fnins.2021.632312
  • Clark KA, Alves JM, Jones S, Yunker AG, Luo S, Cabeen RP, et al. Dietary fructose intake and hippocampal structure and connectivity during childhood. Nutrients. 2020;12:909. doi:10.3390/nu12040909
  • Baym CL, Khan NA, Monti JM, Raine LB, Drollette ES, Moore RD, et al. Dietary lipids are differentially associated with hippocampal-dependent relational memory in prepubescent children. Am J Clin Nutr. 2014;99:1026–32. doi:10.3945/ajcn.113.079624
  • Kendig MD, Boakes RA, Rooney KB, Corbit LH. Chronic restricted access to 10% sucrose solution in adolescent and young adult rats impairs spatial memory and alters sensitivity to outcome devaluation. Physiology & Behavior. 2013;120:164–72. doi:10.1016/j.physbeh.2013.08.012
  • Hsu TM, Konanur VR, Taing L, Usui R, Kayser BD, Goran MI, et al. Effects of sucrose and high fructose corn syrup consumption on spatial memory function and hippocampal neuroinflammation in adolescent rats. Hippocampus. 2015;25:227–39. doi:10.1002/hipo.22368
  • Ferreira A, Castro JP, Andrade JP, Dulce Madeira M, Cardoso A. Cafeteria-diet effects on cognitive functions, anxiety, fear response and neurogenesis in the juvenile rat. Neurobiol Learn Mem. 2018;155:197–207. doi:10.1016/j.nlm.2018.07.014
  • Noble EE, Hsu TM, Liang J, Kanoski SE. Early-life sugar consumption has long-term negative effects on memory function in male rats. Nutr Neurosci. 2019;22:273–83. doi:10.1080/1028415X.2017.1378851
  • Noble EE, Mavanji V, Little MR, Billington CJ, Kotz CM, Wang C. Exercise reduces diet-induced cognitive decline and increases hippocampal brain-derived neurotrophic factor in CA3 neurons. Neurobiol Learn Mem. 2014;114:40–50. doi:10.1016/j.nlm.2014.04.006
  • Noble EE, Hsu TM, Kanoski SE. Gut to brain dysbiosis: mechanisms linking western diet consumption, the microbiome, and cognitive impairment. Front Behav Neurosci. 2017b;11; . doi:10.3389/fnbeh.2017.00009
  • Provensi G, Schmidt SD, Boehme M, Bastiaanssen TFS, Rani B, Costa A, et al. Preventing adolescent stress-induced cognitive and microbiome changes by diet. Proc. Natl. Acad. Sci. U.S.A. 2019;116:9644–51. doi:10.1073/pnas.1820832116
  • Leigh S-J, Kaakoush NO, Bertoldo MJ, Westbrook RF, Morris MJ. Intermittent cafeteria diet identifies fecal microbiome changes as a predictor of spatial recognition memory impairment in female rats. Translational Psychiatry. 2020;10:1–12. doi:10.1038/s41398-019-0665-5
  • Darch HT, Collins MK, O’Riordan KJ, Cryan JF. Microbial memories: Sex-dependent impact of the gut microbiome on hippocampal plasticity. Eur J Neurosci. 2021.
  • Noble EE, Olson CA, Davis E, Tsan L, Chen Y-W, Schade R, et al. Gut microbial taxa elevated by dietary sugar disrupt memory function. Translational Psychiatry. 2021.
  • Cerdó T, Diéguez E, Campoy C. Early nutrition and gut microbiome: interrelationship between bacterial metabolism, immune system, brain structure, and neurodevelopment. American Journal of Physiology-Endocrinology and Metabolism. 2019;317:E617–E630. doi:10.1152/ajpendo.00188.2019
  • Yang Y, Zhong Z, Wang B, Xia X, Yao W, Huang L, et al. Early-life high-fat diet-induced obesity programs hippocampal development and cognitive functions via regulation of gut commensal akkermansia muciniphila. Neuropsychopharmacology. 2019;44:2054–2064. doi:10.1038/s41386-019-0437-1
  • Kashtanova DA, Popenko AS, Tkacheva ON, Tyakht AB, Alexeev DG, Boytsov SA. Association between the gut microbiota and diet: fetal life, early childhood, and further life. Nutrition. 2016;32:620–27. doi:10.1016/j.nut.2015.12.037
  • Martínez MC, Villar ME, Ballarini F, Viola H. Retroactive interference of object-in-context long-term memory: role of dorsal hippocampus and medial prefrontal cortex. Hippocampus. 2014;24:1482–92. doi:10.1002/hipo.22328
  • Gomez-Smith M, Karthikeyan S, Jeffers MS, Janik R, Thomason LA, Stefanovic B, et al. A physiological characterization of the cafeteria diet model of metabolic syndrome in the rat. Physiol Behav. 2016;167:382–91. doi:10.1016/j.physbeh.2016.09.029
  • Kruse MS, Vadillo MJ, Miguelez Fernández AMM, Rey M, Zanutto BS, Coirini H. Sucrose exposure in juvenile rats produces long-term changes in fear memory and anxiety-like behavior. Psychoneuroendocrinology. 2019;104:300–307. doi:10.1016/j.psyneuen.2019.03.016
  • Balderas I, Rodriguez-Ortiz CJ, Salgado-Tonda P, Chavez-Hurtado J, McGaugh JL, Bermudez-Rattoni F. The consolidation of object and context recognition memory involve different regions of the temporal lobe. Learn. Mem. 2008;15:618–24. doi:10.1101/lm.1028008
  • Shepherd JK, Grewal SS, Fletcher A, Bill DJ, Dourish CT. Behavioural and pharmacological characterisation of the elevated “zero-maze” as an animal model of anxiety. Psychopharmacology (Berl). 1994;116:56–64. doi:10.1007/BF02244871
  • Noble EE, Hsu TM, Jones RB, Fodor AA, Goran MI, Kanoski SE. Early-life sugar consumption affects the rat microbiome independently of obesity. J Nutr. 2017a;147:20–28. doi:10.3945/jn.116.238816
  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A. 2011;108:4516–22. doi:10.1073/pnas.1000080107
  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods. 2016;13:581–83. doi:10.1038/nmeth.3869
  • Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–57. doi:10.1038/s41587-019-0209-9
  • Jones RB, Zhu X, Moan E, Murff HJ, Ness RM, Seidner DL, et al. Inter-niche and inter-individual variation in gut microbial community assessment using stool, rectal swab, and mucosal samples. Sci Rep. 2018;8:4139. doi:10.1038/s41598-018-22408-4
  • Guo J, Jou W, Gavrilova O, Hall KD. Persistent diet-induced obesity in male C57BL/6 mice resulting from temporary obesigenic diets. PLoS One. 2009;4;.
  • South T, Westbrook F, Morris MJ. Neurological and stress related effects of shifting obese rats from a palatable diet to chow and lean rats from chow to a palatable diet. Physiology & Behavior. 2012;105:1052–57. doi:10.1016/j.physbeh.2011.11.019
  • Kowalski GM, Hamley S, Selathurai A, Kloehn J, De Souza DP, O’Callaghan S, et al. Reversing diet-induced metabolic dysregulation by diet switching leads to altered hepatic de novo lipogenesis and glycerolipid synthesis. Sci Rep. 2016;6;.
  • Hatzidis A, Hicks JA, Gelineau RR, Arruda NL, De Pina IM, O’Connell KE, et al. Removal of a high-fat diet, but not voluntary exercise, reverses obesity and diabetic-like symptoms in male C57BL/6J mice. Hormones. 2017;16:62–74.
  • Crisóstomo L, Rato L, Jarak I, Silva BM, Raposo JF, Batterham RL, et al. A switch from high-fat to normal diet does not restore sperm quality but prevents metabolic syndrome. Reproduction. 2019;158:377–87. doi:10.1530/REP-19-0259
  • Boitard C, Parkes SL, Cavaroc A, Tantot F, Castanon N, Layé S, et al. Switching adolescent high-Fat diet to adult control diet restores neurocognitive alterations. Front Behav Neurosci. 2016;10; . doi:10.3389/fnbeh.2016.00225
  • McNeilly AD, Gao A, Hill AY, Gomersall T, Balfour DJK, Sutherland C, et al. The effect of dietary intervention on the metabolic and behavioural impairments generated by short term high fat feeding in the rat. Physiology & Behavior. 2016;167:100–109. doi:10.1016/j.physbeh.2016.08.035
  • Fierros-Campuzano J, Ballesteros-Zebadúa P, Manjarrez-Marmolejo J, Aguilera P, Méndez-Diaz M, Prospero-García O, et al. Irreversible hippocampal changes induced by high fructose diet in rats. Nutr Neurosci. 2020: 1–13. doi:10.1080/1028415X.2020.1853418
  • Kendig MD, Fu MX, Rehn S, Martire SI, Boakes RA, Rooney KB. Metabolic and cognitive improvement from switching to saccharin or water following chronic consumption by female rats of 10% sucrose solution. Physiology & Behavior. 2018;188:162–72. doi:10.1016/j.physbeh.2018.02.008
  • Butera PC, Wojcik DM, Clough SJ. Effects of estradiol on food intake and meal patterns for diets that differ in flavor and fat content. Physiology & Behavior. 2010;99:142–145. doi:10.1016/j.physbeh.2009.10.009
  • Frick KM, Kim J, Tuscher JJ, Fortress AM. Sex steroid hormones matter for learning and memory: estrogenic regulation of hippocampal function in male and female rodents. Learn. Mem. 2015;22:472–93. doi:10.1101/lm.037267.114
  • Jašarević E, Morrison KE, Bale TL. Sex differences in the gut microbiome–brain axis across the lifespan. Philos Trans R Soc Lond B Biol Sci. 2016;371;.
  • Chen KLA, Liu X, Zhao YC, Hieronymi K, Rossi G, Auvil LS, et al. Long-term administration of conjugated estrogen and bazedoxifene decreased murine fecal β-glucuronidase activity without impacting overall microbiome community. Sci Rep. 2018;8:8166. doi:10.1038/s41598-018-26506-1
  • Kaliannan K, Robertson RC, Murphy K, Stanton C, Kang C, Wang B, et al. Estrogen-mediated gut microbiome alterations influence sexual dimorphism in metabolic syndrome in mice. Microbiome. 2018;6:205. doi:10.1186/s40168-018-0587-0
  • Lalanza JF, Caimari A, del Bas JM, Torregrosa D, Cigarroa I, Pallàs M, et al. Effects of a post-weaning cafeteria diet in young rats: metabolic syndrome, reduced activity and low anxiety-like behaviour. PLoS ONE. 2014;9:e85049. doi:10.1371/journal.pone.0085049
  • Fülling C, Lach G, Bastiaanssen TFS, Fouhy F, O’Donovan AN, Ventura-Silva A-P, et al. Adolescent dietary manipulations differentially affect gut microbiota composition and amygdala neuroimmune gene expression in male mice in adulthood. Brain, Behavior, and Immunity. 2020.
  • McNamara MP, Singleton JM, Cadney MD, Ruegger PM, Borneman J, Garland T. Early-life effects of juvenile Western diet and exercise on adult gut microbiome composition in mice. Journal of Experimental Biology. 2021.
  • Cho KY. Lifestyle modifications result in alterations in the gut microbiota in obese children. BMC Microbiology. 2021;21:10. doi:10.1186/s12866-020-02002-3
  • Sugawara M, Suzuki T, Totsuka A, Takeuchi M, Ueki K. Composition of corn hull dietary fiber. Starch - Stärke. 1994;46:335–337. doi:10.1002/star.19940460904
  • King DL, Zeug, R, Pettit J. Appendix 1: composition of grains and grain products. In CW Wrigley, IL Batey, editors. Cereal grains Woodhead publishing series in food science, technology and nutrition. Woodhead Publishing; 2010. pp. 487–93.
  • Huang X, Yang Y, Liu Q, He W-Q. Effect of high pressure homogenization on sugar beet pulp: physicochemical, thermal and structural properties. LWT. 2020;134:110177, doi:10.1016/j.lwt.2020.110177
  • Yang C, Zhang F, Jiang X, Yang X, He F, Wang Z, et al. Identification of genetic loci associated with crude protein content and fiber composition in alfalfa (medicago sativa L.) using QTL mapping. Frontiers in Plant Science. 2021;12:210.
  • Connolly ML, Lovegrove JA, Tuohy KM. In vitro evaluation of the microbiota modulation abilities of different sized whole oat grain flakes. Anaerobe. 2010;16:483–88. doi:10.1016/j.anaerobe.2010.07.001
  • Paesani C, Salvucci E, Moiraghi M, Fernandez Canigia L, Pérez GT. Arabinoxylan FROM argentinian whole wheat flour promote the growth of lactobacillus reuteri and bifidobacterium breve. Lett Appl Microbiol. 2019;68:142–48. doi:10.1111/lam.13097
  • Nguyen NK, Deehan EC, Zhang Z, Jin M, Baskota N, Perez-Muñoz ME, et al. Gut microbiota modulation with long-chain corn bran arabinoxylan in adults with overweight and obesity is linked to an individualized temporal increase in fecal propionate. Microbiome. 2020;8:118. doi:10.1186/s40168-020-00887-w
  • Nsor-Atindana J, Zhou YX, Saqib MN, Chen M, Douglas Goff H, Ma J, et al. Enhancing the prebiotic effect of cellulose biopolymer in the gut by physical structuring via particle size manipulation. Food Res Int. 2020;131:108935. doi:10.1016/j.foodres.2019.108935
  • Elshahed MS, Miron A, Aprotosoaie AC, Farag MA. Pectin in diet: interactions with the human microbiome, role in gut homeostasis, and nutrient-drug interactions. Carbohydr Polym. 2021;255:117388. doi:10.1016/j.carbpol.2020.117388
  • Pindjakova J, Sartini C, Lo Re O, Rappa F, Coupe B, Lelouvier B, et al. Gut dysbiosis and adaptive immune response in diet-induced obesity vs. systemic inflammation. Front Microbiol. 2017;8; doi:10.3389/fmicb.2017.01157
  • Wang H, Liu C, Liu Z, Wang Y, Ma L, Xu B. The different dietary sugars modulate the composition of the gut microbiota in honeybee during overwintering. BMC Microbiology. 2020;20:61. doi:10.1186/s12866-020-01726-6
  • Saiyasit N, Chunchai T, Prus D, Suparan K, Pittayapong P, Apaijai N, et al. Gut dysbiosis develops before metabolic disturbance and cognitive decline in high-fat diet–induced obese condition. Nutrition. 2020;69:110576. doi:10.1016/j.nut.2019.110576
  • Romo-Araiza A, Gutiérrez-Salmeán G, Galván EJ, Hernández-Frausto M, Herrera-López G, Romo-Parra H, et al. Probiotics and prebiotics as a therapeutic strategy to improve memory in a model of middle-aged rats. Front. Aging Neurosci. 2018;10. doi:10.3389/fnagi.2018.00416
  • Ishikawa R, Fukushima H, Nakakita Y, Kado H, Kida S. Dietary heat-killed Lactobacillus brevis SBC8803 (SBL88TM) improves hippocampus-dependent memory performance and adult hippocampal neurogenesis. Neuropsychopharmacology Reports. 2019;39:140–45. doi:10.1002/npr2.12054
  • Li J-M, Yu R, Zhang L-P, Wen S-Y, Wang S-J, Zhang X-Y, et al. Dietary fructose-induced gut dysbiosis promotes mouse hippocampal neuroinflammation: a benefit of short-chain fatty acids. Microbiome. 2019;7:98. doi:10.1186/s40168-019-0713-7
  • Magnusson K.R, Hauck L., Jeffrey B.M, Elias V., Humphrey A, Nath R., et al. Relationships between diet-related changes in the gut microbiome and cognitive flexibility. Neuroscience. 2015;300:128–140. https://doi.org/10.1016/j.neuroscience.2015.05.016.
  • Kubinyi E, Bel Rhali S, Sándor S, Szabó A, Felföldi T. Gut microbiome composition is associated with Age and memory performance in Pet dogs. Animals (Basel). 2020;10:1488. doi:10.3390/ani10091488
  • Sanguinetti E, Guzzardi MA, Tripodi M, Panetta D, Selma-Royo M, Zega A, et al. Microbiota signatures relating to reduced memory and exploratory behaviour in the offspring of overweight mothers in a murine model. Sci Rep. 2019;9:12609. doi:10.1038/s41598-019-48090-8
  • Zhang C, Zhang M, Pang X, Zhao Y, Wang L, Zhao L. Structural resilience of the gut microbiota in adult mice under high-fat dietary perturbations. ISME J. 2012;6:1848–57. doi:10.1038/ismej.2012.27
  • Shang Y, Khafipour E, Derakhshani H, Sarna LK, Woo CW, Siow YL, et al. Short term high Fat diet induces obesity-Enhancing changes in mouse Gut microbiota that are partially reversed by cessation of the high Fat diet. Lipids. 2017;52:499–511. doi:10.1007/s11745-017-4253-2
  • Safari Z, Monnoye M, Abuja PM, Mariadassou M, Kashofer K, Gérard P, et al. Steatosis and gut microbiota dysbiosis induced by high-fat diet are reversed by 1-week chow diet administration. Nutrition Research. 2019;71:72–88. doi:10.1016/j.nutres.2019.09.004
  • Haro C, García-Carpintero S, Rangel-Zúñiga OA, Alcalá-Díaz JF, Landa BB, Clemente JC, et al. Consumption of two healthy dietary patterns restored microbiota dysbiosis in obese patients with metabolic dysfunction. Molecular Nutrition & Food Research. 2017;61:1700300. doi:10.1002/mnfr.201700300
  • Qian L, Huang J, Qin H. Probiotics and dietary intervention modulate the colonic mucosa-associated microbiota in high-fat diet populations. Turk J Gastroenterol. 2020;31:295–304. doi:10.5152/tjg.2020.19013
  • Beilharz JE, Kaakoush NO, Maniam J, Morris MJ. Cafeteria diet and probiotic therapy: cross talk among memory, neuroplasticity, serotonin receptors and gut microbiota in the rat. Molecular Psychiatry. 2018;23:351–61. doi:10.1038/mp.2017.38
  • Chunchai T, Thunapong W, Yasom S, Wanchai K, Eaimworawuthikul S, Metzler G, et al. Decreased microglial activation through gut-brain axis by prebiotics, probiotics, or synbiotics effectively restored cognitive function in obese-insulin resistant rats. J Neuroinflammation. 2018;15:11. doi:10.1186/s12974-018-1055-2
  • Kong C, Gao R, Yan X, Huang L, Qin H. Probiotics improve gut microbiota dysbiosis in obese mice fed a high-fat or high-sucrose diet. Nutrition. 2019;60:175–184. doi:10.1016/j.nut.2018.10.002