Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 26, 2023 - Issue 1
439
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Dietary flavonoid kaempferol reduces obesity-associated hypothalamic microglia activation and promotes body weight loss in mice with obesity

, ORCID Icon, ORCID Icon, , , , , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Chooi YC, Ding C, Magkos F. The epidemiology of obesity. Metabolism. 2019;92:6–10. doi:10.1016/j.metabol.2018.09.005.
  • World Health Organization. Obesity and overweight. 2020.
  • Schnurr TM, Jakupović H, Carrasquilla GD, Ängquist L, Grarup N, Sørensen TIA, et al. Obesity, unfavourable lifestyle and genetic risk of type 2 diabetes: a case-cohort study. Diabetologia. 2020;63:1324–32. doi:10.1007/s00125-020-05140-5.
  • Belfort-DeAguiar R, Seo D. Food cues and obesity: overpowering hormones and energy balance regulation. Curr Obes Rep. 2018;7:122–9. doi:10.1007/s13679-018-0303-1.
  • Yang Y, Xu Y. The central melanocortin system and human obesity. J Mol Cell Biol. 2021;12:785–97. doi:10.1093/jmcb/mjaa048.
  • Timper K, Brüning JC. Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity. Dis Model Mech. 2017;10:679–89. doi:10.1242/dmm.026609.
  • Astrup A. Macronutrient balances and obesity: the role of diet and physical activity. Public Health Nutr. 1999;2:341–7. doi:10.1017/S1368980099000464.
  • Wang L, Wang H, Zhang B, Popkin BM, Du S. Elevated fat intake increases body weight and the risk of overweight and obesity among Chinese adults: 1991–2015 trends. Nutrients 2020;12:3272. doi:10.3390/nu12113272
  • André C, Guzman-Quevedo O, Rey C, Rémus-Borel J, Clark S, Castellanos-Jankiewicz A, et al. Inhibiting microglia expansion prevents diet-induced hypothalamic and peripheral inflammation. Diabetes. 2017;66:908–19. doi:10.2337/db16-0586.
  • Kim JD, Yoon NA, Jin S, Diano S. Microglial UCP2 mediates inflammation and obesity induced by high-fat feeding. Cell Metab. 2019;30:952–62. e5. doi:10.1016/j.cmet.2019.08.010
  • Milanski M, Degasperi G, Coope A, Morari J, Denis R, Cintra DE, et al. Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity. J Neurosci. 2009;29:359–70. doi:10.1523/JNEUROSCI.2760-08.2009.
  • Thaler JP, Yi C-X, Schur EA, Guyenet SJ, Hwang BH, Dietrich MO, et al. Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest. 2012;122:153–62. doi:10.1172/JCI59660.
  • Valdearcos M, Douglass JD, Robblee MM, Dorfman MD, Stifler DR, Bennett ML, et al. Microglial inflammatory signaling orchestrates the hypothalamic immune response to dietary excess and mediates obesity susceptibility. Cell Metab. 2017;26:185–97. e3. doi:10.1016/j.cmet.2017.05.015.
  • Calderón-Montaño JM, Burgos-Morón E, Pérez-Guerrero C, López-Lázaro M. A review on the dietary flavonoid kaempferol. Mini Rev Med Chem. 2011;11:298–44. doi:10.2174/138955711795305335.
  • Dabeek WM, Marra MV. Dietary quercetin and kaempferol: bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients. 2019;11(10):2288. doi:10.3390/nu11102288.
  • Bai W, Wang C, Ren C. Intakes of total and individual flavonoids by US adults. Int J Food Sci Nutr. 2014;65:9–20. doi:10.3109/09637486.2013.832170.
  • Alam W, Khan H, Shah MA, Cauli O, Saso L. Kaempferol as a dietary anti-inflammatory agent: current therapeutic standing. Molecules. 2020;25:4073. doi:10.3390/molecules25184073.
  • Kim JK, Park SU. Recent studies on kaempferol and its biological and pharmacological activities. EXCLI J. 2020;19:627–34. doi:10.17179/excli2020-2162.
  • Wang T, Wu Q, Zhao T. Preventive effects of kaempferol on high-fat diet-induced obesity complications in C57BL/6 mice. Biomed Res Int. 2020;2020:4532482. doi:10.1155/2020/4532482.
  • Alkhalidy H, Moore W, Wang A, Luo J, McMillan RP, Wang Y, et al. Kaempferol ameliorates hyperglycemia through suppressing hepatic gluconeogenesis and enhancing hepatic insulin sensitivity in diet-induced obese mice. J Nutr Biochem. 2018;58:90–101. doi:10.1016/j.jnutbio.2018.04.014.
  • Park S, Sapkota K, Kim S, Kim H, Kim SJ. Kaempferol acts through mitogen-activated protein kinases and protein kinase B/AKT to elicit protection in a model of neuroinflammation in BV2 microglial cells. Br J Pharmacol. 2011;164:1008–25. doi:10.1111/j.1476-5381.2011.01389.x.
  • Yang YL, Cheng X, Li WH, Liu M, Wang YH, Du GH. Kaempferol attenuates LPS-induced striatum injury in mice involving anti-neuroinflammation, maintaining BBB integrity, and down-regulating the HMGB1/TLR4 pathway. Int J Mol Sci. 2019;20(3):491. doi:10.3390/ijms20030491.
  • du Sert NP, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, et al. Reporting animal research: explanation and elaboration for the ARRIVE guidelines 2.0. PLOS Biol. 2020;18:e3000411. doi:10.1371/journal.pbio.3000411
  • Barve A, Chen C, Hebbar V, Desiderio J, Saw CL, Kong AN. Metabolism, oral bioavailability and pharmacokinetics of chemopreventive kaempferol in rats. Biopharm Drug Dispos. 2009;30:356–65. doi:10.1002/bdd.677
  • Haissaguerre M, Ferriere A, Clark S, Guzman-Quevedo O, Tabarin A, Cota D. NPV-BSK805, an antineoplastic Jak2 inhibitor effective in myeloproliferative disorders, causes adiposity in mice by interfering with the action of leptin. Front Pharmacol. 2018;9:527. doi: 10.3389/fphar.2018.00527.
  • Castellanos-Jankiewicz A, Guzmán-Quevedo O, Fénelon VS, Zizzari P, Quarta C, Bellocchio L, et al. Hypothalamic bile acid-TGR5 signaling protects from obesity. Cell Metab. 2021;33:1483–1492.e10. doi: 10.1016/j.cmet.2021.04.009.
  • Borba TKF, Toscano AE, de Santana BJR C, Silva SCA, Lagranha CJ, Guzmán Quevedo O, et al. Central administration of REV-ERBα agonist promotes opposite responses on energy balance in fasted and fed states. J Neuroendocrinol. 2020;32(2):e12833. doi: 10.1111/jne.12833.
  • Heydemann A. An overview of murine high fat diet as a model for type 2 diabetes mellitus. J Diabetes Res. 2016;2016:2902351.doi:10.1155/2016/2902351.
  • Alquier T, Poitout V. Considerations and guidelines for mouse metabolic phenotyping in diabetes research. Diabetologia. 2018;61(3):526–38. doi:10.1007/s00125-017-4495-9.
  • Diz-Chaves Y, Pernía O, Carrero P, Garcia-Segura LM. Prenatal stress causes alterations in the morphology of microglia and the inflammatory response of the hippocampus of adult female mice. J Neuroinflammation. 2012;9:71. doi: 10.1186/1742-2094-9-71.
  • Soty M, Vily-Petit J, Castellanos-Jankiewicz A, Guzman-Quevedo O, Raffin M, Clark S, et al. Calcitonin gene-related peptide-induced phosphorylation of STAT3 in arcuate neurons is a link in the metabolic benefits of portal glucose. Neuroendocrinology. 2021;111(6):555–67. doi:10.1159/000509230
  • Astrup A, Ryan L, Grunwald GK, Storgaard M, Saris W, Melanson E, et al. The role of dietary fat in body fatness: evidence from a preliminary meta-analysis of ad libitum low-fat dietary intervention studies. Br J Nutr. 2000;83(Suppl 1):S25–32. doi:10.1017/S0007114500000921.
  • de la Iglesia R, Loria-Kohen V, Zulet MA, Martinez JA, Reglero G, Ramirez de Molina A. Dietary strategies implicated in the prevention and treatment of metabolic syndrome. Int J Mol Sci. 2016;17. doi:10.3390/ijms17111877.
  • Tavares RL, Vasconcelos Md, Dutra MdV, D'Oliveira AB, Lima MDS, Salvadori MGDSS, et al. Mucuna pruriens administration minimizes neuroinflammation and shows anxiolytic, antidepressant and slimming effects in obese rats. Molecules. 2020;25:5559. doi: 10.3390/molecules25235559.
  • Tavares RL, de Vasconcelos MHA, Dorand VAM, Torres Junior EU, Tavares Toscano LL, de Queiroz RT, et al. Mucuna pruriens treatment shows anti-obesity and intestinal health effects on obese rats. Food Funct. 2021;12:6479–89. doi:10.1039/d0fo03261a.
  • Lacerda DC, Urquiza-Martínez MV, Manhaes-de-Castro R, Visco DB, Derosier C, Mercado-Camargo R, et al. Metabolic and neurological consequences of the treatment with polyphenols: a systematic review in rodent models of noncommunicable diseases. Nutr Neurosci [Internet]. 2021:1–17. Available from: https://www.tandfonline.com/doi/full/10.1080/1028415X.2021.1891614.
  • da- Silva WS, Harney JW, Kim BW, Li J, Bianco SD, Crescenzi A, et al. The small polyphenolic molecule kaempferol increases cellular energy expenditure and thyroid hormone activation. Diabetes. 2007;56:767–76. doi:10.2337/db06-1488.
  • Montero M, de la Fuente S, Fonteriz RI, Moreno A, Alvarez J, et al. Effects of long-term feeding of the polyphenols resveratrol and kaempferol in obese mice. PLoS One. 2014;9:e112825. doi:10.1371/journal.pone.0112825.
  • Lee SG, Parks JS, Kang HW. Quercetin, a functional compound of onion peel, remodels white adipocytes to brown-like adipocytes. J Nutr Biochem. 2017;42:62–71. doi:10.1016/j.jnutbio.2016.12.018.
  • Yuan X, Wei G, You Y, Huang Y, Lee HJ, Dong M, et al. Rutin ameliorates obesity through brown fat activation. FASEB J. 2017;31:333–45. doi: 10.1096/fj.201600459RR.
  • Rangel-Ordóñez L, Nöldner M, Schubert-Zsilavecz M, Wurglics M. Plasma levels and distribution of flavonoids in rat brain after single and repeated doses of standardized Ginkgo biloba extract EGb 761®. Planta Med. 2010;76:1683–90. doi:10.1055/s-0030-1249962.
  • Cheng X, Yang YL, Yang H, Wang YH, Du GH. Kaempferol alleviates LPS-induced neuroinflammation and BBB dysfunction in mice via inhibiting HMGB1 release and down-regulating TLR4/MyD88 pathway. Int Immunopharmacol. 2018;56:29–35. doi:10.1016/j.intimp.2018.01.002.
  • Dulloo AG. The search for compounds that stimulate thermogenesis in obesity management: from pharmaceuticals to functional food ingredients. Obes Rev Off J Int Assoc Study Obes. 2011;12:866–83. doi:10.1111/j.1467-789X.2011.00909.x.
  • Caro-Ordieres T, Marín-Royo G, Opazo-Ríos L, Jiménez-Castilla L, Moreno JA, Gómez-Guerrero C, et al. The coming Age of flavonoids in the treatment of diabetic complications. J Clin Med. 2020;9:346. doi: 10.3390/jcm9020346.
  • Zhang Y, Liu D. Flavonol kaempferol improves chronic hyperglycemia-impaired pancreatic beta-cell viability and insulin secretory function. Eur J Pharmacol. 2011;670:325–32. doi:10.1016/j.ejphar.2011.08.011.
  • Chen W, Balland E, Cowley MA. Hypothalamic insulin resistance in obesity: effects on glucose homeostasis. Neuroendocrinology. 2017;104:364–81. doi:10.1159/000455865.
  • Mi Y, Qi G, Fan R, Qiao Q, Sun Y, Gao Y, et al. EGCG ameliorates high-fat- and high-fructose-induced cognitive defects by regulating the IRS/AKT and ERK/CREB/BDNF signaling pathways in the CNS. FASEB J. 2017;31:4998–5011. doi:10.1096/fj.201700400RR.
  • Jais A, Brüning JC. Hypothalamic inflammation in obesity and metabolic disease. J Clin Invest. 2017;127:24–32. doi:10.1172/JCI88878.
  • Valdearcos M, Robblee MM, Benjamin DI, Nomura DK, Xu AW, Koliwad SK. Microglia dictate the impact of saturated fat consumption on hypothalamic inflammation and neuronal function. Cell Rep. 2014;9:2124–38. doi:10.1016/j.celrep.2014.11.018.
  • Park SH, Sim YB, Han PL, Lee JK, Suh HW. Antidepressant-like effect of kaempferol and quercitirin, isolated from Opuntia ficus-indica var. saboten. Exp Neurobiol. 2010;19:30–38. doi:10.5607/en.2010.19.1.30.
  • López M, Alvarez CV, Nogueiras R, Diéguez C. Energy balance regulation by thyroid hormones at central level. Trends Mol Med. 2013;19:418–27. doi:10.1016/j.molmed.2013.04.004.
  • Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 2006;439:484–9. doi:10.1038/nature04330.
  • Ono E, Inoue J, Hashidume T, Shimizu M, Sato R. Anti-obesity and anti-hyperglycemic effects of the dietary citrus limonoid nomilin in mice fed a high-fat diet. Biochem Biophys Res Commun. 2011;410:677–81. doi:10.1016/j.bbrc.2011.06.055.
  • Sato H, Genet C, Strehle A, Thomas C, Lobstein A, Wagner A, et al. Anti-hyperglycemic activity of a TGR5 agonist isolated from Olea europaea. Biochem Biophys Res Commun. 2007;362:793–8. doi:10.1016/j.bbrc.2007.06.130.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.