Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 26, 2023 - Issue 6
189
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Effect of diet supplemented with African Star Apple Fruit Pulp on purinergic, cholinergic and monoaminergic enzymes, TNF-α expression and redox imbalance in the brain of hypertensive rats

, , & ORCID Icon

References

  • Arueya GL, Ugwu GF. Development and evaluation of African star apple (Chrysophyllum albidum) based food supplement and its potential in combating oxidative stress. J Funct Foods. 2017;33:376–85.
  • Erukainure OL, Salau VF, Xiao X, Matsabisa MG, Koorbanally NA, Islam MS. Bioactive compounds of African star apple (Chrysophyllum albidum G. Don) and its modulatory effect on metabolic activities linked to type 2 diabetes in isolated rat psoas muscle. J Food Biochem. 2021;45(1):e13576.
  • Ajayi OB, Oyetayo FL, Akomolafe SF. Starch composition, glycemic indices, antioxidant properties and carbohydrate hydrolyzing enzymes activities of African star apple fruit parts. BMC Complement Med Ther. 2020;20(1):260.
  • Anang MA, Oteng-Peprah M, Opoku-Boadu K. Extraction and characterisation of African Star Apple (Chrysophyllum albidum) seed oil and the adsorptive properties of the fruit shell in Ghana. Int J Food Sci. 2019;2019:4959586.
  • Oyetayo FL, Akomolafe SF, Balogun GB. Effects of Chrysophyllum albidum fruit pulp on haemodynamic parameters, pro-inflammatory markers, antioxidant parameters and critical biomolecules associated with hypertension–in vivo. Inflammopharmacology. 2021;29:825–39.
  • Aronow WS. Hypertension and cognitive impairment. Ann Transl Med. 2017;5(12):259.
  • Gupta A, Perdomo S, Billinger S, Beddhu S, Burns J, Gronseth G. Treatment of hypertension reduces cognitive decline in older adults: a systematic review and meta-analysis. BMJ Open. 2020;10(11):e038971.
  • Walker KA, Power MC, Gottesman RF. Defining the relationship between hypertension, cognitive decline, and dementia: a review. Curr Hypertens Rep. 2017;19(3):24.
  • Carey AN, Gomes SM, Shukitt-Hale B. Blueberry supplementation improves memory in middle-aged mice fed a high-fat diet. J Agric Food Chem. 2014;62(18):3972–8.
  • Dubose LE, Boles Ponto LL, Moser DJ, Harlynn E, Reierson L, Pierce GL. Higher aortic stiffness is associated with lower global cerebrovascular reserve among older humans. Hypertension. 2018;72(2):476–82.
  • Jefferson AL, Cambronero FE, Liu D, Moore EE, Neal JE, Terry JG, et al. Higher aortic stiffness is related to lower cerebral blood flow and preserved cerebrovascular reactivity in older adults. Circulation. 2018;138(18):1951–62. doi:10.1161/circulationaha.118.032410.
  • De Leeuw FE, De Groot JC, Oudkerk M, Witteman JCM, Hofman A, Van Gijn J, Breteler MMB. Hypertension and cerebral white matter lesions in a prospective cohort study. Brain. 2002;125(4):765–72.
  • Rosenblum WI. Fibrinoid necrosis of small brain arteries and arterioles and miliary aneurysms as causes of hypertensive hemorrhage: a critical reappraisal. Acta Neuropathol. 2008;116(4):361–9.
  • Kuźma E, Lourida I, Moore SF, Levine DA, Ukoumunne OC, Llewellyn DJ. Stroke and dementia risk: a systematic review and meta-analysis. Alzheimer’s & Dementia. 2018;14(11):1416–26.
  • Olasehinde TA, Oyeleye SI, Ibeji CU, Oboh G. Beetroot supplemented diet exhibit anti-amnesic effect via modulation of cholinesterases, purinergic enzymes, monoamine oxidase and attenuation of redox imbalance in the brain of scopolamine treated male rats. Nutr Neurosci. 2020: 1–15.
  • Carey AN, Pintea GI, Van Leuven S, Gildawie KR, Squiccimara L, Fine E, et al. Red raspberry (Rubus ideaus) supplementation mitigates the effects of a high-fat diet on brain and behavior in mice. Nutr Neurosci. 2021;24(6):406–16.
  • Oboh G, Oyeleye SI, Akintemi OA, Olasehinde TA. Moringa oleifera supplemented diet modulates nootropic-related biomolecules in the brain of STZ-induced diabetic rats treated with acarbose. Metab Brain Dis. 2018;33(2):457–66.
  • Agunloye OM, Oboh G, Ademiluyi AO, Ademosun AO, Akindahunsi AA, Oyagbemi AA, et al. Cardio-protective and antioxidant properties of caffeic acid and chlorogenic acid: mechanistic role of angiotensin converting enzyme, cholinesterase and arginase activities in cyclosporine induced hypertensive rats. Biomed Pharmacother. 2019;109:450–8.
  • Akinyemi AJ, Thome GR, Morsch VM, Stefanello N, Da Costa P, Cardoso A, et al. Effect of dietary supplementation of ginger and turmeric rhizomes on ectonucleotidases, adenosine deaminase and acetylcholinesterase activities in synaptosomes from the cerebral cortex of hypertensive rats. J Appl Biomed. 2016;14(1):59–70. doi:10.1016/j.jab.2015.06.001.
  • Giusti G, Gakis C. Temperature conversion factors, activation energy, relative substrate specificity and optimum pH of adenosine deaminase from human serum and tissues. Enzyme. 1971;12(4):417–25. Epub 1971/01/01. doi:10.1159/000459567. PubMed PMID: 5316093.
  • Wyse AT, Streck EL, Barros SV, Brusque AM, Zugno AI, Wajner M. Methylmalonate administration decreases Na+, K+-ATPase activity in cerebral cortex of rats. Neuroreport. 2000;11:2331–4.
  • Chan K-M, Delfert D, Junger KD. A direct calorimetric assay for Ca2+-stimulated ATPase activity. Anal Biochem. 1986;157:375–80.
  • Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7:88–95.
  • Green AL, Haughton TM. A colorimetric method for the estimation of monoamine oxidase. Biochem J. 1961;78:172–5. Epub 1961/01/01. doi:10.1042/bj0780172. PubMed PMID: 13708157; PMCID: PMC1205191.
  • Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82(1):70–7.
  • Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–6.
  • Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249(22):7130–9.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.
  • Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351–8.
  • Hayashi I, Morishita Y, Imai K, Nakamura M, Nakachi K, Hayashi T. High-throughput spectrophotometric assay of reactive oxygen species in serum. Mutat Res. 2007;631(1):55–61.
  • Omotuyi OI, Nash O, Inyang OK, Ogidigo J, Enejoh O, Okpalefe O, Hamada T. Flavonoid-rich extract of chromolaena odorata modulate circulating GLP-1 in Wistar rats: computational evaluation of TGR5 involvement. 3 Biotech. 2018;8(2):124.
  • Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics. 2017;18(1):529.
  • Godos J, Vitale M, Micek A, Ray S, Martini D, Del Rio D, et al. Dietary polyphenol intake, blood pressure, and hypertension: a systematic review and meta-analysis of observational studies. Antioxidants. 2019;8(6):152. doi:10.3390/antiox8060152.
  • Miranda AM, Steluti J, Fisberg RM, Marchioni DM. Association between polyphenol intake and hypertension in adults and older adults: a population-based study in Brazil. PLOS ONE. 2016;11(10):e0165791. doi:10.1371/journal.pone.0165791.
  • Bagatini MD, Dos Santos AA, Cardoso AM, Mânica A, Reschke CR, Carvalho FB. The impact of purinergic system enzymes on noncommunicable, neurological, and degenerative diseases. J Immunol Res. 2018;2018:1–21.
  • Cardoso AM, Abdalla FH, Bagatini MD, Martins CC, Da Silva Fiorin F, Baldissarelli J, et al. Swimming training prevents alterations in acetylcholinesterase and butyrylcholinesterase activities in hypertensive rats. Am J Hypertens. 2014;27(4):522–9.
  • Akinyemi AJ, Thomé GR, Morsch VM, Bottari NB, Baldissarelli J, de Oliveira LS, et al. Effect of ginger and turmeric rhizomes on inflammatory cytokines levels and enzyme activities of cholinergic and purinergic systems in hypertensive rats. Planta Med. 2016;82:612–20.
  • Marisco PC, Carvalho FB, Rosa MM, Girardi BA, Gutierres JM, Jaques JAS, et al. Piracetam prevents scopolamine-induced memory impairment and decrease of NTPDase, 5’-nucleotidase and adenosine deaminase activities. Neurochem Res. 2013;38(8):1704–14. doi:10.1007/s11064-013-1072-6.
  • Olasehinde TA, Olaniran AO, Okoh AI. Cholinesterase inhibitory activity, antioxidant properties, and phytochemical composition of chlorococcum sp. extracts. J Food Biochem. 2021;45(3):e13395.
  • Schetinger MRC, Morsch VM, Bonan CD, Wyse AT. NTPDase and 5’-nucleotidase activities in physiological and disease conditions: New perspectives for human health. Biofactors. 2007;31:77–98.
  • Robson SC, Sevigny J, Zimmermann H. The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal. 2006;2(2):409–30. Epub 2008/04/12. doi:10.1007/s11302-006-9003-5
  • Bonan CD, Roesler R, Pereira GS, Battastini AMO, Izquierdo I, Sarkis JJF. Learning-specific decrease in synaptosomal ATP diphosphohydrolase activity from hippocampus and entorhinal cortex of adult rats. Brain Res. 2000;854(1-2):253–6. doi:10.1016/s0006-8993(99)02300-8
  • Pereira GS, Mello e Souza T, Battastini AMO, Izquierdo I, Sarkis JJF, Bonan CD. Effects of i nhibitory avoidance training and/or isolated foot-shock on ectonucleotidase activities in synaptosomes of the anterior and posterior cingulate cortex and the medial precentral area of adult rats. Behav Brain Res. 2002;128(2):121–7.
  • Zsarnovszky A, Bartha T, Frenyo LV, Diano S. NTPDases in the neuroendocrine hypothalamus: possible energy regulators of the positive gonadotrophin feedback. Reprod Biol Endocrinol. 2009;7(1):63.
  • Oboh G, Adewuni TM, Ademosun AO, Olasehinde TA. Sorghum stem extract modulates Na+/K+-ATPase, ecto-5’-nucleotidase, and acetylcholinesterase activities. Comp Clin Path. 2016;25(4):749–56.
  • Grkovic I, Bjelobaba I, Nedeljkovic N, Mitrovic N, Drakulic D, Stanojlovic M, Horvat A. Developmental increase in ecto-5’-nucleotidase activity overlaps with appearance of two immunologically distinct enzyme isoforms in rat hippocampal synaptic plasma membranes. J Mol Neurosci. 2014;54(1):109–18.
  • Medeiros MS, Schumacher-Schuh A, Cardoso AM, Bochi GV, Baldissarelli J, Kegler A, et al. Iron and oxidative stress in Parkinson’s disease: an observational study of injury biomarkers. PLOS ONE. 2016;11(1):e0146129.
  • Cunha RA. How does adenosine control neuronal dysfunction and neurodegeneration? J Neurochem. 2016;139(6):1019–55.
  • Illes P, Rubini P, Ulrich H, Zhao Y, Tang Y. Regulation of microglial functions by purinergic mechanisms in the healthy and diseased CNS. Cells. 2020;9(5):1108.
  • Rebola N, Simões AP, Canas PM, Tomé AR, Andrade GM, Barry CE, et al. Adenosine A2A receptors control neuroinflammation and consequent hippocampal neuronal dysfunction. J Neurochem. 2011;117(1):100–11.
  • Wieraszko A. Extracellular ATP as a neurotransmitter: its role in synaptic plasticity in the hippocampus. Acta Neurobiol Exp (Wars). 1996;56:637–48.
  • Huang C-C, Liang Y-C, Hsu K-S. A role for extracellular adenosine in time-dependent reversal of long-term potentiation by low-frequency stimulation at hippocampal CA1 synapses. J Neurosci. 1999;19(22):9728–38.
  • Zhang L-N, Sun Y-J, Pan S, Li J-X, Qu Y-E, Li Y, et al. Na+-K+-ATPase, a potent neuroprotective modulator against Alzheimer disease. Fundam Clin Pharmacol. 2013;27(1):96–103.
  • de Vasconcellos AP, Zugno AI, Dos Santos AH, Nietto FB, Crema LM, Goncalves M, et al. Na+,K(+)-ATPase activity is reduced in hippocampus of rats submitted to an experimental model of depression: effect of chronic lithium treatment and possible involvement in learning deficits. Neurobiol Learn Mem. 2005;84(2):102–10.
  • Vitvitsky VM, Garg SK, Keep RF, Albin RL, Banerjee R. Na+ and K+ ion imbalances in Alzheimer’s disease. Biochim Biophys Acta. 2012;1822(11):1671–81.
  • Arnaiz GR, Ordieres MG. Brain Na+, K+-ATPase activity in aging and disease. Int J Biomed Sci. 2014;10(2):85–102.
  • Kurauchi Y, Noma K, Hisatsune A, Seki T, Katsuki H. Na(+), K(+)-ATPase inhibition induces neuronal cell death in rat hippocampal slice cultures: Association with GLAST and glial cell abnormalities. J Pharmacol Sci. 2018;138(3):167–75.
  • Kopf SR, Melani A, Pedata F, Pepeu G. Adenosine and memory storage. Psychopharmacology. 1999;146(2):214–19.
  • Rahman A. The role of adenosine in Alzheimers disease. Curr Neuropharmacol. 2009;7(3):207–16.
  • Ikarashi Y, Harigaya Y, Tomidokoro Y, Kanai M, Ikeda M, Matsubara E, et al. Decreased level of brain acetylcholine and memory disturbance in APPsw mice. Neurobiol Aging. 2004;25(4):483–90.
  • Ferreira-Vieira HT, Guimaraes MI, Silva RF, Ribeiro MF. Alzheimer’s disease: targeting the cholinergic system. Curr Neuropharmacol. 2016;14(1):101–15.
  • Fernandes CP, Correa AL, Cruz RA, Botas GDS, Silva-Filho MV, Santos MG, et al. Anticholinesterasic activity of Manilkara subsericea (Mart.) Dubard triterpenes. Lat Am J Pharm. 2011;30(8):1631–4.
  • Xie Y, Yang W, Chen X, Xiao J. Inhibition of flavonoids on acetylcholine esterase: binding and structure–activity relationship. Food Funct. 2014;5(10):2582–9. doi:10.1039/c4fo00287c.
  • Wojdylo A, Nowicka P, Grimalt M, Legua P, Almansa MS, Amoros A, et al. Polyphenol compounds and biological activity of caper (Capparis spinosa L.) flowers buds. Plants (Basel). 2019;8(12):539.
  • Jabir NR, Khan FR, Tabrez S. Cholinesterase targeting by polyphenols: a therapeutic approach for the treatment of Alzheimer’s disease. CNS Neurosci Ther. 2018;24(9):753–62.
  • Behl T, Kaur D, Sehgal A, Singh S, Sharma N, Zengin G, et al. Role of monoamine oxidase activity in Alzheimer’s disease: an insight into the therapeutic potential of inhibitors. Molecules. 2021;26(12):3724.
  • Cai Z. Monoamine oxidase inhibitors: promising therapeutic agents for Alzheimer’s disease (review). Mol Med Rep. 2014;9(5):1533–41. doi:10.3892/mmr.2014.2040.
  • Bortolato M, Chen K, Shih JC. Monoamine oxidase inactivation: from pathophysiology to therapeutics. Adv Drug Delivery Rev. 2008;60(13-14):1527–33.
  • Adefegha SA, Oboh G, Olasehinde TA. Alkaloid extracts from shea butter and breadfruit as potential inhibitors of monoamine oxidase, cholinesterases, and lipid peroxidation in rats’ brain homogenates: A comparative study. Comp Clin Path. 2016;25:1213–19.
  • Cai Z. Monoamine oxidase inhibitors: promising therapeutic agents for Alzheimer’s disease. Mol Med Rep. 2014;9(5):1533–41.
  • Hou W-C, Lin R-D, Chen C-T, Lee M-H. Monoamine oxidase B (MAO-B) inhibition by active principles from uncaria rhynchophylla. J Ethnopharmacol. 2005;100(1-2):216–20.
  • Topaz GR, March A, Epiter-Smith V, Stieglitz KA. Inhibition of monoamine oxidase (MAO) via Green tea extracts: structural insights of Catechins as potential inhibitors of MAO. Front Nat Prod Chem. 2019;5(5):1–38.
  • Bernatoniene J, Kopustinskiene DM. The role of catechins in cellular responses to oxidative stress. Molecules. 2018;23(4):965.
  • Semwal DK, Semwal RB, Combrinck S, Viljoen A. Myricetin: a dietary molecule with diverse biological activities. Nutrients. 2016;8(2):90.
  • Rodríguez V, de Kloet AD, Sumners C. Hypertension and brain inflammation: role of RAS- induced glial activation. In: Girouard H, editor. Hypertension and the brain as an end-organ target. Springer; 2016. p. 181–94.
  • Sedger LM, McDermott MF. TNF and TNF-receptors: from mediators of cell death and inflammation to therapeutic giants – past, present and future. Cytokine Growth Factor Rev. 2014;25(4):453–72.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.