Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 26, 2023 - Issue 8
598
Views
6
CrossRef citations to date
0
Altmetric
Review

Application of curcumin nanoformulations in Alzheimer’s disease: prevention, diagnosis and treatment

, , , &

References

  • Faustino C, Rijo P, Reis CP. Nanotechnological strategies for nerve growth factor delivery: therapeutic implications in Alzheimer’s disease. Pharmacol Res. 2017;120:68–87. Doi:10.1016/j.phrs.2017.03.020
  • Wen MM, El-Salamouni NS, El-Refaie WM, Hazzah HA, Ali MM, Tosi G, et al. Nanotechnology-based drug delivery systems for Alzheimer’s disease management: technical, industrial, and clinical challenges. J Control Release. 2017;245:95–107. doi:10.1016/j.jconrel.2016.11.025
  • Rabbito A, Dulewicz M, Kulczyńska-Przybik A, Mroczko B. Biochemical markers in Alzheimer’s disease. Int J Mol Sci. 2020;21(6):1989. doi:10.3390/ijms21061989
  • Karthivashan G, Ganesan P, Park S-Y, Kim J-S, Choi D-K. Therapeutic strategies and nano-drug delivery applications in management of ageing Alzheimer’s disease. Drug Deliv. 2018;25(1):307–20. doi:10.1080/10717544.2018.1428243
  • Wilson B, Geetha KM. Neurotherapeutic applications of nanomedicine for treating Alzheimer's disease. J Control Release. 2020;325:25–37. doi:10.1016/j.jconrel.2020.05.044
  • Rezaeian AH, Wei W, Inuzuka H. The regulation of neuronal autophagy and cell survival by MCL1 in Alzheimer’s disease. Acta Mater Med. 2022;1(1):42–55.
  • Inuzuka H, Liu J, Wei W, Rezaeian AH. PROTACs technology for treatment of Alzheimer’s disease: advances and perspectives. Acta Mater Med. 2022;1(1):24–41.
  • Hewlings SJ, Kalman DS. Curcumin: a review of its effects on human health. Foods. 2017;6(10):92. doi:10.3390/foods6100092
  • Zia A, Farkhondeh T, Pourbagher-Shahri AM, Samarghandian S. The role of curcumin in aging and senescence: molecular mechanisms. Biomed Pharmacother. 2021;134:111119. doi:10.1016/j.biopha.2020.111119
  • Rahimi HR, Nedaeinia R, Sepehri Shamloo A, Nikdoust S, Kazemi Oskuee R. Novel delivery system for natural products: nano-curcumin formulations. Avicenna J Phytomed. 2016;6(4):383–98.
  • Baranowska-Wojcik E, Szwajgier D. Alzheimer’s disease: review of current nanotechnological therapeutic strategies. Expert Rev Neurother. 2020;20(3):271–9. doi:10.1080/14737175.2020.1719069
  • Martin-Rapun R, De Matteis L, Ambrosone A, Garcia-Embid S, Gutierrez L, de la Fuente JM. Targeted nanoparticles for the treatment of Alzheimer’s disease. Curr Pharm Design. 2017;23(13):1927–52. doi:10.2174/1381612822666161226151011
  • Harilal S, Jose J, Parambi DGT, Kumar R, Mathew GE, Uddin MS, et al. Advancements in nanotherapeutics for Alzheimer’s disease: current perspectives. J Pharm Pharmacol. 2019;71(9):1370–83. doi:10.1111/jphp.13132
  • Chen ZR, Huang JB, Yang SL, Hong FF. Role of cholinergic signaling in Alzheimer’s disease. Molecules. 2022;27(6):1816. doi:10.3390/molecules27061816
  • Hettiarachchi SD, Zhou Y, Seven E, Lakshmana MK, Kaushik AK, Chand HS, et al. Nanoparticle-mediated approaches for Alzheimer’s disease pathogenesis, diagnosis, and therapeutics. J Control Release. 2019;314:125–40. doi:10.1016/j.jconrel.2019.10.034
  • Chen Y, Strickland MR, Soranno A, Holtzman DM. Apolipoprotein E: structural insights and links to Alzheimer disease pathogenesis. Neuron. 2021;109(2):205–21. doi:10.1016/j.neuron.2020.10.008
  • de Leeuw SM, Kirschner AWT, Lindner K, Rust R, Budny V, Wolski WE, et al. APOE2, e3, and E4 differentially modulate cellular homeostasis, cholesterol metabolism, and inflammatory response in isogenic iPSC-derived astrocytes. Stem Cell Rep. 2022;17(1):110–126. doi:10.1016/j.stemcr.2021.11.007
  • Niu X, Chen J, Gao J. Nanocarriers as a powerful vehicle to overcome blood-brain barrier in treating neurodegenerative diseases: focus on recent advances. Asian J Pharm Sci. 2019;14(5):480–96. doi:10.1016/j.ajps.2018.09.005
  • Saeedi M, Eslamifar M, Khezri K, Dizaj SM. Applications of nanotechnology in drug delivery to the central nervous system. Biomed Pharmacother. 2019;111:666–75. doi:10.1016/j.biopha.2018.12.133
  • Teixeira MI, Lopes CM, Amaral MH, Costa PC. Current insights on lipid nanocarrier-assisted drug delivery in the treatment of neurodegenerative diseases. Eur J Pharm Biopharm. 2020;149:192–217. doi:10.1016/j.ejpb.2020.01.005
  • Naqvi S, Panghal A, Flora SJS. Nanotechnology: a promising approach for delivery of neuroprotective drugs. Front Neurosci. 2020;14:494. doi:10.3389/fnins.2020.00494
  • Chen Y, Lu Y, Lee RJ, Xiang G. Nano encapsulated curcumin: And its potential for biomedical applications. Int J Nanomed. 2020;15:3099–120. doi:10.2147/IJN.S210320
  • Shabbir U, Rubab M, Tyagi A, Oh D-H. Curcumin and its derivatives as theranostic agents in Alzheimer’s disease: the implication of nanotechnology. Int J Mol Sci. 2021;22(1):196. doi:10.3390/ijms22010196
  • Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, et al. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem. 2005;280(7):5892–901. doi:10.1074/jbc.M404751200
  • Salamanova E, Atanasova M, Dimitrov I, Doytchinova I. Effects of curcumin and ferulic acid on the folding of amyloid-β peptide. Molecules. 2021;26(9):2815. doi:10.3390/molecules26092815
  • Serafini MM, Catanzaro M, Rosini M, Racchi M, Lanni C. Curcumin in Alzheimer’s disease: Can we think to new strategies and perspectives for this molecule? Pharmacol Res. 2017;124:146–55. doi:10.1016/j.phrs.2017.08.004
  • Salehi B, Calina D, Docea AO, Koirala N, Aryal S, Lombardo D, et al. Curcumin’s nanomedicine formulations for therapeutic application in neurological diseases. J Clin Med. 2020;9(2):430. doi:10.3390/jcm9020430
  • Tang M, Taghibiglou C. The mechanisms of action of curcumin in Alzheimer’s disease. J Alzheimers Dis. 2017;58(4):1003–16. doi:10.3233/JAD-170188
  • Mandal M, Jaiswal P, Mishra A. Role of curcumin and its nanoformulations in neurotherapeutics: A comprehensive review. J Biochem Mol Toxic. 2020;34(6):e22478. doi:10.1002/jbt.22478
  • Farooqui T, Farooqui A. Curcumin for neurological and psychiatric disorders: neurochemical and pharmacological properties. Columbus (OH): Elsevier; 2019.
  • Borsari M, Ferrari E, Grandi R, Saladini M. Curcuminoids as potential new iron-chelating agents: spectroscopic, polarographic and potentiometric study on their Fe(III) complexing ability. Inorg Chim Acta. 2002;328:61–68. doi:10.1016/S0020-1693(01)00687-9
  • Yan FS, Sun JL, Xie WH, Shen L, Ji HF. Neuroprotective effects and mechanisms of curcumin-Cu(II) and -Zn(II) complexes systems and their pharmacological implications. Nutrients. 2017;10(1):28. doi:10.3390/nu10010028
  • Mirzaei H, Shakeri A, Rashidi B, Jalili A, Banikazemi Z, Sahebkar A. Phytosomal curcumin: a review of pharmacokinetic, experimental and clinical studies. Biomed Pharmacother. 2017;85:102–112. doi:10.1016/j.biopha.2016.11.098
  • Ma Z, Wang N, He H, Tang X. Pharmaceutical strategies of improving oral systemic bioavailability of curcumin for clinical application. J Control Release. 2019;316:359–80. doi:10.1016/j.jconrel.2019.10.053
  • Malvajerd SS, Izadi Z, Azadi A, Kurd M, Derakhshankhah H, Zadeh MS, et al. Neuroprotective potential of curcumin-loaded nanostructured lipid carrier in an animal model of Alzheimer’s disease: behavioral and biochemical evidence. J Alzheimers Dis. 2019;69(3):671–86. doi:10.3233/JAD-190083
  • Hassanzadeh K, Buccarello L, Dragotto J, Mohammadi A, Corbo M, Feligioni M. Obstacles against the marketing of curcumin as a drug. Int J Mol Sci. 2020;21(18):6619. doi:10.3390/ijms21186619
  • Sohn SI, Priya A, Balasubramaniam B, Muthuramalingam P, Sivasankar C, Selvaraj A, et al. Biomedical applications and bioavailability of curcumin-an updated overview. Pharmaceutics. 2021;13(12):2102. doi:10.3390/pharmaceutics13122102
  • Mahjoob M, Stochaj U. Curcumin nanoformulations to combat aging-related diseases. Ageing Res Rev. 2021;69:101364. doi:10.1016/j.arr.2021.101364
  • Moradi SZ, Momtaz S, Bayrami Z, Farzaei MH, Abdollahi M. Nanoformulations of herbal extracts in treatment of neurodegenerative disorders. Front Bioeng Biotechnol. 2020;8:238. doi:10.3389/fbioe.2020.00238
  • Goozee KG, Shah TM, Sohrabi HR, Rainey-Smith SR, Brown B, Verdile G, et al. Examining the potential clinical value of curcumin in the prevention and diagnosis of Alzheimer’s disease. Brit J Nutr. 2016;115(3):449–65. doi:10.1017/S0007114515004687
  • Chen M, Du Z-Y, Zheng X, Li D-L, Zhou R-P, Zhang K. Use of curcumin in diagnosis, prevention, and treatment of Alzheimer’s disease. Neural Regen Res. 2018;13(4):742–52. doi:10.4103/1673-5374.230303
  • Di Martino P, Censi R, Gigliobianco MR, Zerrillo L, Magnoni F, Agas D, et al. Nano-medicine improving the bioavailability of small molecules for the prevention of neurodegenerative diseases. Curr Pharm Design. 2017;23(13):1897–908. doi:10.2174/1381612822666161227154447
  • Safouris A, Tsivgoulis G, Sergentanis TN, Psaltopoulou T. Mediterranean diet and risk of dementia. Curr Alzheimer Res. 2015;12(8):736–44. doi:10.2174/1567205012666150710114430
  • Maiti P, Bowers Z, Bourcier-Schultz A, Morse J, Dunbar GL. Preservation of dendritic spine morphology and postsynaptic signaling markers after treatment with solid lipid curcumin particles in the 5xFAD mouse model of Alzheimer’s amyloidosis. Alzheimers Res Ther. 2021;13(1):37. doi:10.1186/s13195-021-00769-9
  • Sidiqi A, Wahl D, Lee S, Ma D, To E, Cui J, et al. In vivo retinal fluorescence imaging with curcumin in an Alzheimer mouse model. Front Neurosci. 2020;14:713. doi:10.3389/fnins.2020.00713
  • Chibhabha F, Yang Y, Ying K, Jia F, Zhang Q, Ullah S, et al. Non-invasive optical imaging of retinal A beta plaques using curcumin loaded polymeric micelles in APP swe/PS1ΔE9 transgenic mice for the diagnosis of Alzheimer's disease. J Mater Chem B. 2020;8(33):7438–52. doi:10.1039/D0TB01101K
  • Dong CM, Guo AS, To A, Chan KWY, Chow ASF, Bian L, et al. Early detection of amyloid beta pathology in Alzheimer’s disease by molecular MRI. Annu Int Conf IEEE Eng Med Biol Soc. 2020;2020:1100–3.
  • Ahmed A, Ghallab EH, Shehata M, Zekri A-RN, Ahmed OS. Impact of nano-conjugate on Drosophila for early diagnosis of Alzheimer’s disease. Nanotechnology. 2020;31(36):365102. doi:10.1088/1361-6528/ab7535
  • Kuang Y, Zhang J, Xiong M, Zeng W, Lin X, Yi X, et al. A novel nanosystem realizing curcumin delivery based on Fe3O4@carbon dots nanocomposite for Alzheimer's disease therapy. Front Bioeng Biotech. 2020;8:614906. doi:10.3389/fbioe.2020.614906
  • Prasad S, DuBourdieu D, Srivastava A, Kumar P, Lall R. Metal-curcumin complexes in therapeutics: An approach to enhance pharmacological effects of curcumin. Int J Mol Sci. 2021;22(13):7094. doi:10.3390/ijms22137094
  • Mari M, Carrozza D, Ferrari E, Asti M. Applications of radiolabelled curcumin and its derivatives in medicinal chemistry. Int J Mol Sci. 2021;22(14):7410. doi:10.3390/ijms22147410
  • Martins PA, Alsaiari S, Julfakyan K, Nie Z, Khashab NM. Self-assembled lipoprotein based gold nanoparticles for detection and photothermal disaggregation of β-amyloid aggregates. Chem Commun (Camb). 2017;53(13):2102–5. doi:10.1039/C6CC09085K
  • Cheng C-S, Liu T-P, Chien F-C, Mou C-Y, Wu S-H, Che Y-P. Codelivery of plasmid and curcumin with mesoporous silica nanoparticles for promoting neurite outgrowth. Acs Appl Mater Inter. 2019;11(17):15322–31. doi:10.1021/acsami.9b02797
  • Mars A, Hamami M, Bechnak L, Patra D, Raouafi N. Curcumin-graphene quantum dots for dual mode sensing platform: electrochemical and fluorescence detection of APOe4, responsible of Alzheimer’s disease. Anal Chim Acta. 2018;1036:141–6. doi:10.1016/j.aca.2018.06.075
  • Koronyo Y, Biggs D, Barron E, Boyer DS, Pearlman JA, Au WJ, et al. Retinal amyloid pathology and proof-of-concept imaging trial in Alzheimer’s disease. Jci Insight. 2017;2(16):e93621. doi:10.1172/jci.insight.93621
  • Sato T, Hotsumi M, Makabe K, Konno H. Design, synthesis and evaluation of curcumin-based fluorescent probes to detect A beta fibrils. Bioorg Med Chem Lett. 2018;28(22):3520–5. doi:10.1016/j.bmcl.2018.10.002
  • Gan C, Hu J, Nan D-D, Wang S, Li H. Synthesis and biological evaluation of curcumin analogs as beta-amyloid imaging agents. Future Med Chem. 2017;9(14):1587–96. doi:10.4155/fmc-2017-0079
  • Ryu EK, Choe YS, Lee KH, Choi Y, Kim BT. Curcumin and dehydrozingerone derivatives: synthesis, radiolabeling, and evaluation for beta-amyloid plaque imaging. J Med Chem. 2006;49(20):6111–9. doi:10.1021/jm0607193
  • Del Prado-Audelo ML, Caballero-Floran IH, Meza-Toledo JA, Mendoza-Munoz N, Gonzalez-Torres M, Floran B, et al. Formulations of curcumin nanoparticles for brain diseases. Biomolecules. 2019;9(2):56. doi:10.3390/biom9020056
  • Rakotoarisoa M, Angelova A. Amphiphilic nanocarrier systems for curcumin delivery in neurodegenerative disorders. Medicines (Basel). 2018;5(4):126. doi:10.3390/medicines5040126
  • Fidelis EM, Pinto Savall AS, EdL A, Carvalho F, Guerra Teixeira FE, Haas SE, et al. Curcumin-loaded nanocapsules reverses the depressant-like behavior and oxidative stress induced by beta-amyloid in mice. Neuroscience. 2019;423:122–30. doi:10.1016/j.neuroscience.2019.09.032
  • Giacomeli R, Izoton JC, dos Santos RB, Boeira SP, Jesse CR, Haas SE. Neuroprotective effects of curcumin lipid-core nanocapsules in a model Alzheimer's disease induced by beta-amyloid 1-42 peptide in aged female mice. Brain Res. 2019;1721:146325. doi:10.1016/j.brainres.2019.146325
  • Ordonez-Gutierrez L, Wandosellu F. Nanoliposomes as a therapeutic tool for Alzheimer’s disease. Front Synaptic Neurosci. 2020;12:20. doi:10.3389/fnsyn.2020.00020
  • Ross C, Taylor M, Fullwood N, Allsop D. Liposome delivery systems for the treatment of Alzheimer’s disease. Int J Nanomed. 2018;13:8507–22. doi:10.2147/IJN.S183117
  • Huang N, Lu S, Liu X-G, Zhu J, Wang Y-J, Liu R-T. PLGA nanoparticles modified with a BBB-penetrating peptide co-delivering A beta generation inhibitor and curcumin attenuate memory deficits and neuropathology in Alzheimer’s disease mice. Oncotarget. 2017;8(46):81001–13. doi:10.18632/oncotarget.20944
  • Paka GD, Doggui S, Zaghmi A, Safar R, Dao L, Reisch A, et al. Neuronal uptake and neuroprotective properties of curcumin-loaded nanoparticles on SK-N-SH cell line: role of poly(lactide-co-glycolide) polymeric matrix composition. Mol Pharmaceut. 2016;13(2):391–403. doi:10.1021/acs.molpharmaceut.5b00611
  • Huo X, Zhang Y, Jin X, Li Y, Zhang L. A novel synthesis of selenium nanoparticles encapsulated PLGA nanospheres with curcumin molecules for the inhibition of amyloid beta aggregation in Alzheimer’s disease. J Photoch Photobio B. 2019;190:98–102. doi:10.1016/j.jphotobiol.2018.11.008
  • Barbara R, Belletti D, Pederzoli F, Masoni M, Keller J, Ballestrazzi A, et al. Novel curcumin loaded nanoparticles engineered for blood-brain barrier crossing and able to disrupt Abeta aggregates. Int J Pharmaceut. 2017;526(1-2):413–24. doi:10.1016/j.ijpharm.2017.05.015
  • Fan S, Zheng Y, Liu X, Fang W, Chen X, Liao W, et al. Curcumin-loaded PLGA-PEG nanoparticles conjugated with B6 peptide for potential use in Alzheimer’s disease. Drug Deliv. 2018;25(1):1044–55. doi:10.1080/10717544.2018.1464084
  • Mirzaie Z, Ansari M, Kordestani SS, Rezaei MH, Mozafari M. Preparation and characterization of curcumin-loaded polymeric nanomicelles to interference with amyloidogenesis through glycation method. Biotechnol Appl Bioc. 2019;66(4):537–44. doi:10.1002/bab.1751
  • Desai PP, Patravale VB. Curcumin cocrystal micellesd-multifunctional nanocomposites for management of neurodegenerative ailments. J Pharm Sci-US. 2018;107(4):1143–56. doi:10.1016/j.xphs.2017.11.014
  • Pinelli F, Ortolà ÓF, Makvandi P, Perale G, Rossi F. In vivo drug delivery applications of nanogels: a review. Nanomedicine (Lond). 2020;15(27):2707–27. doi:10.2217/nnm-2020-0274
  • Wei X, Senanayake TH, Warren G, Vinogradov SV. Hyaluronic acid-based nanogel-drug conjugates with enhanced anticancer activity designed for the targeting of CD44-positive and drug-resistant tumors. Bioconjug Chem. 2013;24(4):658–68. doi:10.1021/bc300632w
  • Jiang Z, Dong X, Liu H, Wang Y, Zhang L, Sun Y. Multifunctionality of self-assembled nanogels of curcumin-hyaluronic acid conjugates on inhibiting amyloid β-protein fibrillation and cytotoxicity. React Funct Polym. 2016;104:22–9. doi:10.1016/j.reactfunctpolym.2016.04.019
  • Jiang Z, Dong X, Yan X, Liu Y, Zhang L, Sun Y. Nanogels of dual inhibitor-modified hyaluronic acid function as a potent inhibitor of amyloid β-protein aggregation and cytotoxicity. Sci Rep. 2018;8(1):3505. doi:10.1038/s41598-018-21933-6
  • Li X, Uehara S, Sawangrat K, Morishita M, Kusamori K, Katsumi H, et al. Improvement of intestinal absorption of curcumin by cyclodextrins and the mechanisms underlying absorption enhancement. Int J Pharm. 2018;535(1-2):340–9.
  • Loftsson T, Jarho P, Másson M, Järvinen T. Cyclodextrins in drug delivery. Expert Opin Drug Deliv. 2005;2(2):335–51.
  • Du Be Y P, Ghosh S. Curcumin-β-cyclodextrin alloy: synergistic effect on aggregation inhibition of silk fibroin. Biophys J. 2016;110(3):219a–220a.
  • Zhang L, Yang S, Wong LR, Xie H, Ho PC-L. In vitro and In vivo comparison of curcumin-encapsulated chitosan-coated poly(lactic-co-glycolic acid) nanoparticles and curcumin/hydroxypropyl-beta-cyclodextrin inclusion complexes administered intranasally as therapeutic strategies for Alzheimer’s disease. Mol Pharmaceut. 2020;17(11):4256–69. doi:10.1021/acs.molpharmaceut.0c00675
  • Tran PHL, Tran TTD. Nano-sized solid dispersions for improving the bioavailability of poorly water-soluble drugs. Curr Pharm Des. 2020;26(38):4917–24.
  • Teixeira CC, Mendonça LM, Bergamaschi MM, Queiroz RH, Souza GE, Antunes LM, et al. Microparticles containing curcumin solid dispersion: stability, bioavailability and anti-inflammatory activity. AAPS Pharm Sci Tech. 2016;17(2):252–61. doi:10.1208/s12249-015-0337-6
  • Parikh A, Kathawala K, Li J, Chen C, Shan Z, Cao X, et al. Curcumin-loaded self-nanomicellizing solid dispersion system: part II: in vivo safety and efficacy assessment against behavior deficit in Alzheimer disease. Drug Deliv Transl Re. 2018;8(5):1406–20. doi:10.1007/s13346-018-0570-0
  • Li A, Zhao J, Fu J, Cai J, Zhang P. Recent advances of biomimetic nano-systems in the diagnosis and treatment of tumor. Asian J Pharm Sci. 2021;16(2):161–74. doi:10.1016/j.ajps.2019.08.001
  • Li R, He Y, Zhang S, Qin J, Wang J. Cell membrane-based nanoparticles: a new biomimetic platform for tumor diagnosis and treatment. Acta Pharm Sin B. 2018;8(1):14–22. doi:10.1016/j.apsb.2017.11.009
  • Gao C, Wang Y, Sun J, Han Y, Gong W, Li Y, et al. Neuronal mitochondria-targeted delivery of curcumin by biomimetic engineered nanosystems in Alzheimer’s disease mice. Acta Biomater. 2020;108:285–99. doi:10.1016/j.actbio.2020.03.029
  • Li R, Peng F, Cai J, Yang D, Zhang P. Redox dual-stimuli responsive drug delivery systems for improving tumor-targeting ability and reducing adverse side effects. Asian J Pharm Sci. 2020;15(3):311–25. doi:10.1016/j.ajps.2019.06.003
  • Jin K, Luo Z, Zhang B, Pang Z. Biomimetic nanoparticles for inflammation targeting. Acta Pharm Sin B. 2018;8(1):23–33. doi:10.1016/j.apsb.2017.12.002
  • Gao C, Chu X, Gong W, Zheng J, Xie X, Wang Y, et al. Neuron tau-targeting biomimetic nanoparticles for curcumin delivery to delay progression of Alzheimer’s disease. J Nanobiotechnol. 2020;18(1):71. doi:10.1186/s12951-020-00626-1
  • SoukhakLari R, Moezi L, Pirsalami F, Moosavi M. The effect of BSA-based curcumin nanoparticles on memory and hippocampal MMP-2, MMP-9, and MAPKs in adult mice. J Mol Neurosci. 2018;65(3):319–26. doi:10.1007/s12031-018-1104-4
  • Kuo Y-C, Tsai H-C. Rosmarinic acid- and curcumin-loaded polyacrylamide-cardiolipin-poly (lactide-co-glycolide) nanoparticles with conjugated 83-14 monoclonal antibody to protect beta-amyloid-insulted neurons. Mat Sci Eng C-Mater. 2018;91:445–57. doi:10.1016/j.msec.2018.05.062
  • Askarizadeh A, Barreto GE, Henney NC, Majeed M, Sahebkar A. Neuroprotection by curcumin: a review on brain delivery strategies. Int J Pharmaceut. 2020;585:119476. doi:10.1016/j.ijpharm.2020.119476
  • Yavarpour-Bali H, Ghasemi-Kasman M, Pirzadeh M. Curcumin-loaded nanoparticles: a novel therapeutic strategy in treatment of central nervous system disorders. Int J Nanomed. 2019;14:4449–60. doi:10.2147/IJN.S208332
  • Sandhir R, Yadav A, Mehrotra A, Sunkaria A, Singh A, Sharma S. Curcumin nanoparticles attenuate neurochemical and neurobehavioral deficits in experimental model of Huntington’s disease. Neuromolecular Med. 2014;16(1):106–18. doi:10.1007/s12017-013-8261-y
  • Kumar SSD, Houreld NN, Abrahamse H. Therapeutic potential and recent advances of curcumin in the treatment of aging-associated diseases. Molecules. 2018;23(4):835. doi:10.3390/molecules23040835
  • Gagliardi S, Morasso C, Stivaktakis P, Pandini C, Tinelli V, Tsatsakis A, et al. Curcumin formulations and trials: what’s new in neurological diseases. Molecules. 2020;25(22):5389. doi:10.3390/molecules25225389
  • Błasiak J, Trzeciak A, Małecka-Panas E, Drzewoski J, Iwanienko T, Szumiel I, et al. DNA damage and repair in human lymphocytes and gastric mucosa cells exposed to chromium and curcumin. Teratog Carcinog Mutagen. 1999;19(1):19–31.
  • Bhat A, Mahalakshmi AM, Ray B, Tuladhar S, Hediyal TA, Manthiannem E, et al. Benefits of curcumin in brain disorders. Biofactors. 2019;45(5):666–89. doi:10.1002/biof.1533
  • Lao CD, Ruffin MT, Normolle D, Heath DD, Murray SI, Bailey JM, et al. Dose escalation of a curcuminoid formulation. BMC Complement Altern Med. 2006;6:10. doi:10.1186/1472-6882-6-10
  • Zhang A, Meng K, Liu Y, Pan Y, Qu W, Chen D, et al. Absorption, distribution, metabolism, and excretion of nanocarriers in vivo and their influences. Adv Colloid Interfac. 2020;284:102261. doi:10.1016/j.cis.2020.102261
  • Shende P, Mallick C. Nanonutraceuticals: A way towards modern therapeutics in healthcare. J Drug Deliv Sci Tec. 2020;58:101838. doi:10.1016/j.jddst.2020.101838

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.