Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 27, 2024 - Issue 5
184
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Creatine supplementation increases postnatal growth and strength and prevents overexpression of pro-inflammatory interleukin 6 in the hippocampus in an experimental model of cerebral palsy

, , , , , , , & ORCID Icon show all

References

  • Baxter P, Morris C, Rosenbaum P, Paneth N, Leviton A, Goldstein M, et al. The definition and classification of cerebral palsy. Dev Med Child Neurol. 2007;49:1–44.
  • Himmelmann K. Epidemiology of cerebral palsy. 1st ed. Amsterdam, The Netherlands: Elsevier B.V; 2013.
  • Rumajogee P, Bregman T, Miller SP, Yager JY, Fehlings MG. Rodent hypoxia-ischemia models for cerebral palsy research: a systematic review. Front Neurol. 2016;7(APR):57.
  • Krick J, Duyn MV. The relationship between oral-motor involvement and growth: a pilot study in a pediatric population with cerebral palsy. J Am Diet Assoc. 1984;84(5):555–9. doi:10.1016/S0002-8223(21)08200-6.
  • Krigger KW. Cerebral palsy: an overview. Am Fam Physician. 2006;73(1):91–100.
  • Colver A, Fairhurst C, Pharoah POD. Cerebral palsy. Lancet. 2014;383(9924):1240–9. doi:10.1016/S0140-6736(13)61835-8.
  • Peterson MD, Ryan JM, Hurvitz EA, Mahmoudi E. Chronic conditions in adults with cerebral palsy. JAMA. 2015;314(21):2303–5. doi:10.1001/jama.2015.11025.
  • Magalhães RC, Moreira JM, Lauar AO, da Silva AAS, Teixeira AL, e Silva ACS. Inflammatory biomarkers in children with cerebral palsy: A systematic review. Res Dev Disabil. 2019;95(September):103508.
  • Pingel J, Barber L, Andersen IT, Walden FV, Wong C, Døssing S, Nielsen JB. Systemic inflammatory markers in individuals with cerebral palsy. Eur J Inflamm. 2019;17; doi:10.1177/2058739218823474.
  • Diz-Chaves Y, Pernía O, Carrero P, Garcia-Segura LM. Prenatal stress causes alterations in the morphology of microglia and the inflammatory response of the hippocampus of adult female mice. J Neuroinflammation. 2012;9:1–10. doi:10.1186/1742-2094-9-71.
  • Roque A, Ochoa-Zarzosa A, Torner L. Maternal separation activates microglial cells and induces an inflammatory response in the hippocampus of male rat pups, independently of hypothalamic and peripheral cytokine levels. Brain Behav Immun. 2016;55:39–48. doi:10.1016/j.bbi.2015.09.017.
  • Saavedra LM, Hernández-Velázquez MG, Madrigal S, Ochoa-Zarzosa A, Torner L. Long-term activation of hippocampal glial cells and altered emotional behavior in male and female adult rats after different neonatal stressors. Psychoneuroendocrinology. 2021;126(February):105164.
  • Cho JW, Jung SY, Kim DY, Chung YR, Choi HH, Jeon JW, Han JH. PI3K-Akt-Wnt pathway is implicated in exercise-induced improvement of short-term memory in cerebral palsy rats. Int Neurourol J. 2018;22:S156–S164. doi:10.5213/inj.1836224.112.
  • Canu MH, Falempin M. Effect of hindlimb unloading on interlimb coordination during treadmill locomotion in the rat. Eur J Appl Physiol. 1998;78(6):509–15. doi:10.1007/s004210050453.
  • Strata F, Coq JO, Byl N, Merzenich MM. Effects of sensorimotor restriction and anoxia on gait and motor cortex organization: implications for a rodent model of cerebral palsy. Neuroscience. 2004;129(1):141–56. doi:10.1016/j.neuroscience.2004.07.024.
  • Coq JO, Strata F, Russier M, Safadi FF, Merzenich MM, Byl NN, Barbe MF. Impact of neonatal asphyxia and hind limb immobilization on musculoskeletal tissues and S1 map organization: implications for cerebral palsy. Exp Neurol. 2008;210(1):95–108. doi:10.1016/j.expneurol.2007.10.006.
  • Delcour M, Massicotte VS, Russier M, Bras H, Peyronnet J, Canu MH, et al. Early movement restriction leads to enduring disorders in muscle and locomotion. Brain Pathol. 2018;28(6):889–901. doi:10.1111/bpa.12594.
  • Delcour M, Russier M, Castets F, Turle-Lorenzo N, Canu MH, Cayetanot F, et al. Early movement restriction leads to maladaptive plasticity in the sensorimotor cortex and to movement disorders. Sci Rep. 2018;8(1):1–15. doi:10.1038/s41598-018-34312-y.
  • Lacerda DC, Manhães-de-Castro R, Gouveia HJCB, Tourneur Y, Costa de Santana BJ, Assunção Santos RE, et al. Treatment with the essential amino acid L-tryptophan reduces masticatory impairments in experimental cerebral palsy. Nutr Neurosci. 2019;0(0):1–13. doi:10.1080/1028415X.2019.1695360.
  • Pereira S da C, Benoit B, de Aguiar Junior FCA, Chanon S, Vieille-Marchiset A, Pesenti S, et al. Fibroblast growth factor 19 as a countermeasure to muscle and locomotion dysfunctions in experimental cerebral palsy. J Cachexia Sarcopenia Muscle. 2021;12(6):2122–33. doi:10.1002/jcsm.12819.
  • Lawler JM, Barnes WS, Wu G, Song W, Demaree S. Direct antioxidant properties of creatine. Biochem Biophys Res Commun. 2002;290(1):47–52. doi:10.1006/bbrc.2001.6164.
  • Bender A, Auer DP, Merl T, Reilmann R, Saemann P, Yassouridis A, et al. Creatine supplementation lowers brain glutamate levels in Huntington’s disease. J Neurol. 2005;252(1):36–41. doi:10.1007/s00415-005-0595-4.
  • Deldicque L, Theisen D, Bertrand L, Hespe P, Hue L, Francaux M. Creatine enhances differentiation of myogenic C2C12cells by activating both p38 and Akt/PKB pathways. Am J Physiol-Cell Physiol. 2007;293(4). doi:10.1152/ajpcell.00162.2007.
  • Bassit RA, Curi R, Costa Rosa LFBP. Creatine supplementation reduces plasma levels of pro-inflammatory cytokines and PGE2 after a half-ironman competition. Amino Acids. 2008;35(2):425–31. doi:10.1007/s00726-007-0582-4.
  • Genius J, Geiger J, Bender A, Möller HJ, Klopstock T, Rujescu D. Creatine protects against excitoxicity in an in vitro model of neurodegeneration. PLoS One. 2012;7(2):e30554–8. doi:10.1371/journal.pone.0030554.
  • Guimarães-Ferreira L, Pinheiro CHJ, Gerlinger-Romero F, Vitzel KF, Nachbar RT, Curi R, Nunes MT. Short-term creatine supplementation decreases reactive oxygen species content with no changes in expression and activity of antioxidant enzymes in skeletal muscle. Eur J Appl Physiol. 2012;112(11):3905–11. doi:10.1007/s00421-012-2378-9.
  • Matthews RT, Yang L, Jenkins BG, Ferrante RJ, Rosen BR, Kaddurah-Daouk R, Beal MF. Neuroprotective effects of creatine and cyclocreatine in animal models of Huntington’s disease. J Neurosci. 1998;18(1):156–63. doi:10.1523/jneurosci.18-01-00156.1998.
  • Leem Y-H, Kato M, Chang H. Regular exercise and creatine supplementation prevent chronic mild stress-induced decrease in hippocampal neurogenesis via Wnt/GSK3β/β-catenin pathway. J Exerc Nutrition Biochem. 2018;22(2):1–6. doi:10.20463/jenb.2018.0009.
  • Cella PS, Marinello PC, Borges FH, Ribeiro DF, Chimin P, Testa MTJ, et al. Creatine supplementation in Walker-256 tumor-bearing rats prevents skeletal muscle atrophy by attenuating systemic inflammation and protein degradation signaling. Eur J Nutr. 2020;59(2):661–9. doi:10.1007/s00394-019-01933-6.
  • Safdar A, Yardley NJ, Snow R, Melov S, Tarnopolsky MA. Global and targeted gene expression and protein content in skeletal muscle of young men following short-term creatine monohydrate supplementation. Physiol Genomics. 2008;32(2):219–28. doi:10.1152/physiolgenomics.00157.2007.
  • Sakkas GK, Schambelan M, Mulligan K. Can the use of creatine supplementation attenuate muscle loss in cachexia and wasting? Curr Opin Clin Nutr Metab Care. 2009;12(6):623–7. doi:10.1097/MCO.0b013e328331de63.
  • Willoughby DS, Rosene JM. Effects of oral creatine and resistance training on myogenic regulatory factor expression. Med Sci Sports Exercise. 2003;35(6):923–9. doi:10.1249/01.MSS.0000069746.05241.F0.
  • du Sert NP, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The arrive guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol. 2020;18(7):e3000410–12. doi:10.1371/journal.pbio.3000410.
  • Silva Kd, Pereira SdC, Portovedo M, Milanski M, Galindo LCM, Guzmán-Quevedo O, et al. Effects of maternal low-protein diet on parameters of locomotor activity in a rat model of cerebral palsy. Int J Dev Neurosci. 2016;52:38–45. doi:10.1016/j.ijdevneu.2016.05.002.
  • Butchbach MERR, Edwards JD, Schussler KR, Burghes AHMM. A novel method for oral delivery of drug compounds to the neonatal SMNΔ7 mouse model of spinal muscular atrophy. J Neurosci Methods. 2008;161(1):285–90. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdf.
  • Murai IH, Roschel H, Pabis LVS, Takayama L, de Oliveira RB, dos Santos Pereira RT, et al. Exercise training, creatine supplementation, and bone health in ovariectomized rats. Osteoporos Int. 2015;26(4):1395–404. doi:10.1007/s00198-014-3017-6.
  • Ali MA, Kravitz AV. Challenges in quantifying food intake in rodents. Brain Res. 2018;1693(Pt B):188–91. doi:10.1016/j.brainres.2018.02.040.
  • Takeshita H, Yamamoto K, Nozato S, Inagaki T, Tsuchimochi H, Shirai M, et al. Modified forelimb grip strength test detects aging-associated physiological decline in skeletal muscle function in male mice. Sci Rep. 2017;7(November 2015):1–9.
  • Herold S, Kumar P, Jung K, Graf I, Menkhoff H, Schulz X, et al. Catwalk gait analysis in a rat model of multiple sclerosis. BMC Neurosci. 2016;17(1):1–13. doi:10.1186/s12868-016-0317-0.
  • Lacerda DC, Ferraz-Pereira KN, Visco DB, Pontes PB, Chaves WF, Guzman-Quevedo O, et al. Perinatal undernutrition associated to experimental model of cerebral palsy increases adverse effects on chewing in young rats. Physiol Behav. 2017;173:69–78. doi:10.1016/j.physbeh.2017.01.043.
  • Phillips SM, Glover EI, Rennie MJ. Alterations of protein turnover underlying disuse atrophy in human skeletal muscle. J Appl Physiol. 2009;107(3):645–54. doi:10.1152/japplphysiol.00452.2009.
  • Aoki MS, Lima WP, Miyabara EH, Gouveia CHA, Moriscot AS. Deleteriuos effects of immobilization upon rat skeletal muscle: role of creatine supplementation. Clin Nutr. 2004;23(5):1176–83. doi:10.1016/j.clnu.2004.03.004.
  • Hespel P, Op B, Leemputte MV, Ursø B, Greenhaff PL, Labarque V, et al. Oral creatine supplementation facilitates the rehabilitation of disuse atrophy and alters the expression of muscle myogenic factors in humans. J Physiol. 2001;536(Pt 2):625–33.
  • Galbraith RA, Furukawa M, Li M. Possible role of creatine concentrations in the brain in regulating appetite and weight. Brain Res. 2006;1101(1):85–91. doi:10.1016/j.brainres.2006.05.032.
  • Ekdahl CT. Microglial activation – tuning and pruning adult neurogenesis. Front Pharmacol. 2012;3(March):1–9.
  • Kim EJ, Pellman B, Kim JJ. Stress effects on the hippocampus: a critical review. Learn Mem. 2015;22(9):411–6. doi:10.1101/lm.037291.114.
  • Lajud N, Torner L. Early life stress and hippocampal neurogenesis in the neonate: sexual dimorphism, long term consequences and possible mediators. Front Mol Neurosci. 2015;8(FEB):1–10.
  • Burman DD. Hippocampal connectivity with sensorimotor cortex during volitional finger movements: laterality and relationship to motor learning. PLoS One. 2019;14(9). doi:10.1371/journal.pone.0222064.
  • Fragopoulou AF, Qian Y, Heijtz RD, Forssberg H. Can neonatal systemic inflammation and hypoxia yield a cerebral palsy-like phenotype in periadolescent mice? Mol Neurobiol. 2019;56(10):6883–900. doi:10.1007/s12035-019-1548-8.
  • Monje ML, Toda H, Palmer TD. Inflammatory blockade restores adult hippocampal neurogenesis. Science (1979). 2003;302(5651):1760–5.
  • Visco DB, Manhães-de-Castro R, da Silva MM, Costa-de-Santana BJR, Pereira dos Santos Junior J, Saavedra LM, et al. Neonatal kaempferol exposure attenuates impact of cerebral palsy model on neuromotor development, cell proliferation, microglia activation, and antioxidant enzyme expression in the hippocampus of rats. Nutr Neurosci. 2022;28:1–22.
  • Iosif RE, Ekdahl CT, Ahlenius H, Pronk CJH, Bonde S, Kokaia Z, et al. Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis. J Neurosci. 2006;26(38):9703–12. doi:10.1523/JNEUROSCI.2723-06.2006.
  • Yirmiya R, Goshen I. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun. 2011;25(2):181–213. doi:10.1016/j.bbi.2010.10.015.
  • Valliè L, Campbell IL, Gage FH, Sawchenko PE. (2002). Reduced hippocampal neurogenesis in adult transgenic mice with chronic astrocytic production of interleukin-6.
  • Campos-Ferraz PL, Gualano B, das Neves W, Andrade IT, Hangai I, Pereira RTS, et al. Exploratory studies of the potential anti-cancer effects of creatine. Amino Acids. 2016;48(8):1993–2001. doi:10.1007/s00726-016-2180-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.