Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 27, 2024 - Issue 7
154
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Blueberry extracts antagonize Aβ25–35 neurotoxicity and exert a neuroprotective effect through MEK-ERK-BDNF/UCH-L1 signaling pathway in rat and mouse hippocampus

, , , , &

References

  • De Strooper B, Karran E. The cellular phase of Alzheimer’s disease. Cell. 2016;164:603–15. doi:10.1016/j.cell.2015.12.056.
  • Saha P, Sarkar S, Paidi RK, Biswas SC. TIMP-1: a key cytokine released from activated astrocytes protects neurons and ameliorates cognitive behaviours in a rodent model of Alzheimer’s disease. Brain Behav Immun. 2020;87:804–19. doi:10.1016/j.bbi.2020.03.014
  • Ma H, Johnson SL, Liu W, DaSilva NA, Meschwitz S, Dain JA, et al. Evaluation of polyphenol anthocyanin-enriched extracts of blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry for free radical scavenging, reactive carbonyl species trapping, anti-glycation, anti-beta-amyloid aggregation, and microglial neuroprotective effects. Int J Mol Sci. 2018;19:461. doi:10.3390/ijms19020461
  • Dal-Pan A, Dudonne S, Bourassa P, Bourdoulous M, Tremblay C, Desjardins Y, et al. Cognitive-Enhancing effects of a polyphenols-rich extract from fruits without changes in neuropathology in an animal model of Alzheimer’s disease. J Alzheimer’s Dis. 2016;55:115–35. doi:10.3233/JAD-160281
  • Li HQ, Tan L, Yang HP, Pang W, Xu T, Jiang YG. Changes of hippocampus proteomic profiles after blueberry extracts supplementation in APP/PS1 transgenic mice. Nutr Neurosci. 2020;23:75–84. doi:10.1080/1028415X.2018.1471251
  • Shukitt-Hale B, Lau FC, Carey AN, Galli RL, Spangler EL, Ingram DK, et al. Blueberry polyphenols attenuate kainic acid-induced decrements in cognition and alter inflammatory gene expression in rat hippocampus. Nutr Neurosci. 2008;11:172–82. doi:10.1179/147683008X301487
  • Tan L, Yang H, Pang W, Li H, Liu W, Sun S, et al. Investigation on the role of BDNF in the benefits of blueberry extracts for the improvement of learning and memory in Alzheimer’s disease mouse model. J Alzheimer’s Dis. 2017;56:629–40. doi:10.3233/JAD-151108
  • Zhu Y, Bickford PC, Sanberg P, Giunta B, Tan J. Blueberry opposes beta-amyloid peptide-induced microglial activation via inhibition of p44/42 mitogen-activation protein kinase. Rejuvenation Res. 2008;11:891–901. doi:10.1089/rej.2008.0757
  • Papandreou MA, Dimakopoulou A, Linardaki ZI, Cordopatis P, Klimis-Zacas D, Margarity M, et al. Effect of a polyphenol-rich wild blueberry extract on cognitive performance of mice, brain antioxidant markers and acetylcholinesterase activity. Behav Brain Res. 2009;198:352–8. doi:10.1016/j.bbr.2008.11.013
  • Giampieri F, Alvarez-Suarez JM, Cordero MD, Gasparrini M, Forbes-Hernandez TY, Afrin S, et al. Strawberry consumption improves aging-associated impairments, mitochondrial biogenesis and functionality through the AMP-activated protein kinase signaling cascade. Food Chem. 2017;234:464–71. doi:10.1016/j.foodchem.2017.05.017
  • Joseph JA, Shukitt-Hale B, Denisova NA, Bielinski D, Martin A, McEwen JJ, et al. Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation. J Neurosci. 1999;19:8114–21. doi:10.1523/JNEUROSCI.19-18-08114.1999
  • Rutledge GA, Fisher DR, Miller MG, Kelly ME, Bielinski DF, Shukitt-Hale B. The effects of blueberry and strawberry serum metabolites on age-related oxidative and inflammatory signaling in vitro. Food Funct. 2019;10:7707–13. doi:10.1039/C9FO01913H
  • Bowtell JL, Aboo-Bakkar Z, Conway ME, Adlam AR, Fulford J. Enhanced task-related brain activation and resting perfusion in healthy older adults after chronic blueberry supplementation. Appl Physiol Nutr Metab. 2017;42:773–9. doi:10.1139/apnm-2016-0550
  • Shoudan Sun JC, Jin Z, Li H, Jiang Y. Effects of blueberry extracts on processing speed and working memory of elderly patients with mild cognition impairment. Acta Nutrimenta Sinaca. 2021;43:279–82.
  • Joseph JA, Denisova NA, Arendash G, Gordon M, Diamond D, Shukitt-Hale B, et al. Blueberry supplementation enhances signaling and prevents behavioral deficits in an Alzheimer disease model. Nutr Neurosci. 2003;6:153–62. doi:10.1080/1028415031000111282
  • Tan L, Yang HP, Pang W, Lu H, Hu YD, Li J, et al. Cyanidin-3-O-galactoside and blueberry extracts supplementation improves spatial memory and regulates hippocampal ERK expression in senescence-accelerated mice. Biomed Environ Sci. 2014;27:186–96.
  • Yang H, Pang W, Lu H, Cheng D, Yan X, Cheng Y, et al. Comparison of metabolic profiling of cyanidin-3-O-galactoside and extracts from blueberry in aged mice. J Agric Food Chem. 2011;59:2069–76. doi:10.1021/jf1033619
  • Aicardi G, Argilli E, Cappello S, Santi S, Riccio M, Thoenen H, et al. Induction of long-term potentiation and depression is reflected by corresponding changes in secretion of endogenous brain-derived neurotrophic factor. Proc Natl Acad Sci USA. 2004;101:15788–92. doi:10.1073/pnas.0406960101
  • Klapdor K, van der staay FJ. The Morris water-escape task in mice: strain differences and effects of intra-maze contrast and brightness. Physiol Behav. 1996;60:1247–54. doi:10.1016/S0031-9384(96)00224-7.
  • van der Staay FJ. Effects of the size of the morris water tank on spatial discrimination learning in the CFW1 mouse. Physiol Behav. 2000;68:599–602. doi:10.1016/S0031-9384(99)00236-X
  • Aljanabi NM, Mamtani S, Al-Ghuraibawi MMH, Yadav S, Nasr L. Alzheimer’s and hyperglycemia: role of the insulin signaling pathway and GSK-3 inhibition in paving a path to dementia. Cureus 2020;12:e6885. doi:10.7759/cureus.6885.
  • Beracochea D, Krazem A, Henkouss N, Haccard G, Roller M, Fromentin E. Intake of wild blueberry powder improves episodic-like and working memory during normal aging in mice. Planta Med. 2016;82:1163–8. doi:10.1055/s-0042-104419
  • Boespflug EL, Eliassen JC, Dudley JA, Shidler MD, Kalt W, Summer SS, et al. Enhanced neural activation with blueberry supplementation in mild cognitive impairment. Nutr Neurosci. 2018;21:297–305. doi:10.1080/1028415X.2017.1287833
  • Krishna G, Ying Z, Gomez-Pinilla F. Blueberry supplementation mitigates altered brain plasticity and behavior after traumatic brain injury in rats. Mol Nutr Food Res. 2019;63:1801055. doi:10.1002/mnfr.201801055
  • Ota KT, Pierre VJ, Ploski JE, Queen K, Schafe GE. The NO-cGMP-PKG signaling pathway regulates synaptic plasticity and fear memory consolidation in the lateral amygdala via activation of ERK/MAP kinase. Learn Mem. 2008;15:792–805. doi:10.1101/lm.1114808
  • Brewer GJ, Torricelli JR, Lindsey AL, Kunz EZ, Neuman A, Fisher DR, et al. Age-related toxicity of amyloid-beta associated with increased pERK and pCREB in primary hippocampal neurons: reversal by blueberry extract. J Nutr Biochem. 2010;21:991–8. doi:10.1016/j.jnutbio.2009.08.005
  • Kelleher RJ, Govindarajan A, Jung HY, Kang H, Tonegawa S. Translational control by MAPK signaling in long-term synaptic plasticity and memory. Cell. 2004;116:467–79. doi:10.1016/S0092-8674(04)00115-1.
  • Sweatt JD. Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol. 2004;14:311–7. doi:10.1016/j.conb.2004.04.001
  • Kowianski P, Lietzau G, Czuba E, Waskow M, Steliga A, Morys J. Bdnf: a key factor with multipotent impact on brain signaling and synaptic plasticity. Cell Mol Neurobiol. 2018;38:579–93. doi:10.1007/s10571-017-0510-4
  • Bramham CR, Messaoudi E. BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol. 2005;76:99–125. doi:10.1016/j.pneurobio.2005.06.003
  • Soliman F, Glatt CE, Bath KG, Levita L, Jones RM, Pattwell SS, et al. A genetic variant BDNF polymorphism alters extinction learning in both mouse and human. Science. 2010;327:863–6. doi:10.1126/science.1181886
  • Korte M, Carroll P, Wolf E, Brem G, Thoenen H, Bonhoeffer T. Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc Natl Acad Sci USA. 1995;92:8856–60. doi:10.1073/pnas.92.19.8856
  • Poon WW, Carlos AJ, Aguilar BL, Berchtold NC, Kawano CK, Zograbyan V, et al. β-Amyloid (Aβ) oligomers impair brain-derived neurotrophic factor retrograde trafficking by down-regulating ubiquitin C-terminal hydrolase, UCH-L1. J Biol Chem. 2013;288:16937–48. doi:10.1074/jbc.M113.463711
  • Walters BJ, Campbell SL, Chen PC, Taylor AP, Schroeder DG, Dobrunz LE, et al. Differential effects of Usp14 and Uch-L1 on the ubiquitin proteasome system and synaptic activity. Mol Cell Neurosci. 2008;39:539–48. doi:10.1016/j.mcn.2008.07.028
  • Kim T, Vidal GS, Djurisic M, William CM, Birnbaum ME, Garcia KC, et al. Human LilrB2 Is a β-amyloid receptor and Its murine homolog PirB regulates synaptic plasticity in an Alzheimer’s model. Science. 2013;341:1399–404. doi:10.1126/science.1242077
  • Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, et al. Amyloid-β protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med. 2008;14:837–42. doi:10.1038/nm1782

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.