Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Latest Articles
74
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Supplementation with Manihot esculenta Crantz (Cassava) leaves’ extract prevents recognition memory deficits and hippocampal antioxidant dysfunction induced by Amyloid-β

, , , , &

References

  • Zussy C, Brureau A, Delair B, Marchal S, Keller E, Ixart G, et al. Time-course and regional analyses of the physiopathological changes induced after cerebral injection of an amyloid beta fragment in rats. Am J Pathol. 2011 Jul;179(1):315–34. doi:10.1016/j.ajpath.2011.03.021
  • Wang X, Wang W, Li L, Perry G, Lee HG, Zhu X. Oxidative stress and mitochondrial dysfunction in Alzheimer's disease. Biochim Biophys Acta. 2014 Aug;1842(8):1240–47. doi:10.1016/j.bbadis.2013.10.015
  • Block ML. NADPH oxidase as a therapeutic target in Alzheimer's disease. BMC Neurosci. 2008 Dec 3;9(Suppl 2):S8. doi:10.1186/1471-2202-9-S2-S8
  • Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F. Oxidative stress and the amyloid beta peptide in Alzheimer's disease. Redox Biol. 2018 Apr;14:450–64. doi:10.1016/j.redox.2017.10.014
  • Schilling T, Eder C. Amyloid-beta-induced reactive oxygen species production and priming are differentially regulated by ion channels in microglia. J Cell Physiol. 2011 Dec;226(12):3295–302. doi:10.1002/jcp.22675
  • Faller P, Hureau C, Berthoumieu O. Role of metal ions in the self-assembly of the Alzheimer's amyloid-beta peptide. Inorg Chem. 2013 Nov 4;52(21):12193–206. doi:10.1021/ic4003059
  • Butterfield DA, Boyd-Kimball D. Oxidative stress, amyloid-beta peptide, and altered key molecular pathways in the pathogenesis and progression of Alzheimer's disease. J Alzheimers Dis. 2018;62(3):1345–67. doi:10.3233/JAD-170543
  • Butterfield DA, Hensley K, Harris M, Mattson M, Carney J. Beta-Amyloid peptide free radical fragments initiate synaptosomal lipoperoxidation in a sequence-specific fashion: implications to Alzheimer's disease. Biochem Biophys Res Commun. 1994 Apr 29;200(2):710–15. doi:10.1006/bbrc.1994.1508
  • Schimidt HL, Carrazoni GS, Garcia A, Izquierdo I, Mello-Carpes PB, Carpes FP. Strength training or green tea prevent memory deficits in a beta-amyloid peptide-mediated Alzheimer's disease model. Exp Gerontol. 2021 Jan;143:111186. doi:10.1016/j.exger.2020.111186
  • Dare LR, Garcia A, Soares CB, Lopes L, Neves BS, Dias DV, et al. The reversal of memory deficits in an Alzheimer's disease model using physical and cognitive exercise. Front Behav Neurosci. 2020;14:152. doi:10.3389/fnbeh.2020.00152
  • Chen WW, Zhang X, Huang WJ. Role of physical exercise in Alzheimer's disease. Biomed Rep. 2016 Apr;4(4):403–407. doi:10.3892/br.2016.607
  • Kakutani S, Watanabe H, Murayama N. Green tea intake and risks for dementia, Alzheimer's disease, mild cognitive impairment, and cognitive impairment: a systematic review. Nutrients. 2019 May 24;11(5). doi:10.3390/nu11051165
  • Pervin M, Unno K, Ohishi T, Tanabe H, Miyoshi N, Nakamura Y. Beneficial effects of green tea catechins on neurodegenerative diseases. Molecules. 2018 May 29;23(6). doi:10.3390/molecules23061297
  • Martins A, Schimidt HL, Garcia A, Colletta Altermann CD, Santos FW, Carpes FP, et al. Supplementation with different teas from Camellia sinensis prevents memory deficits and hippocampus oxidative stress in ischemia-reperfusion. Neurochem Int. 2017 Sep;108:287–95. doi:10.1016/j.neuint.2017.04.019
  • Mandal PK, Roy RG, Samkaria A. Oxidative stress: glutathione and its potential to protect methionine-35 of abeta peptide from oxidation. ACS Omega. 2022 Aug 9;7(31):27052–61. doi:10.1021/acsomega.2c02760
  • Bahekar SE, Kale RS. Evaluation of antioxidant activity of Manihot esculenta Crantz in wistar rats. J Pharm Bioallied Sci. 2016 Apr–Jun;8(2):119–23. doi:10.4103/0975-7406.171697
  • Santos MAI. Effect of different extraction methods on the antioxidant activity and phenolic compounds profile of cassava leaf. Braz J Food Technol. 2016;19: e2015067), http://dx.doi.org/10.1590/1981-6723.6715.
  • Yi B, Hu L, Mei W, Zhou K, Wang H, Luo Y, et al. Antioxidant phenolic compounds of cassava (Manihot esculenta) from Hainan. Molecules. 2011 Dec 7;16(12):10157–67. doi:10.3390/molecules161210157
  • Bernatoniene J, Kopustinskiene DM. The role of catechins in cellular responses to oxidative stress. Molecules. 2018 Apr 20;23(4). doi:10.3390/molecules23040965
  • Tao H, Cui B, Zhang H, Bekhit AE-D, Lu F. Identification and characterization of flavonoids compounds in cassava leaves (Manihot esculenta Crantz) by HPLC/FTICR-MS. Int J Food Prop. 2019 January 1;22(1):1134–45. doi:10.1080/10942912.2019.1626879
  • Clark JD, Gebhart GF, Gonder JC, Keeling ME, Kohn DF. Special report: the 1996 guide for the care and use of laboratory animals. ILAR J. 1997;38(1):41–48. doi:10.1093/ilar.38.1.41
  • Ennaceur A, Delacour J. A new one-trial test for neurobiological studies of memory in rats. 1: behavioral data. Behav Brain Res. 1988 Nov 1;31(1):47–59. doi:10.1016/0166-4328(88)90157-X
  • Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979 Jun;95(2):351–58. doi:10.1016/0003-2697(79)90738-3
  • Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem. 1996 Jul 15;239(1):70–76. doi:10.1006/abio.1996.0292
  • Noussi Djouwoug C, Ngueguim FT, Kamkumo Gounoue R, Donfack Gouni C, Kandeda AK, Philippe Djientcheu J, et al. Hydroethanolic extract from bridelia atroviridis mull. Arg. Bark improves haematological and biochemical parameters in nicotinamide-/streptozotocin-induced diabetic rats. Evid Based Complement Alternat Med. 2020;2020:3160834. doi:10.1155/2020/3160834
  • Paxinos G, Watson CR, Emson PC. AChE-stained horizontal sections of the rat brain in stereotaxic coordinates. J Neurosci Methods. 1980 Dec;3(2):129–49. doi:10.1016/0165-0270(80)90021-7
  • Benetti F, Mello PB, Bonini JS, Monteiro S, Cammarota M, Izquierdo I. Early postnatal maternal deprivation in rats induces memory deficits in adult life that can be reversed by donepezil and galantamine. Int J Dev Neurosci. 2009 Feb;27(1):59–64. doi:10.1016/j.ijdevneu.2008.09.200
  • Pellow S, Chopin P, File SE, Briley M. Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods. 1985 Aug;14(3):149–67. doi:10.1016/0165-0270(85)90031-7
  • Ghasemi R, Zarifkar A, Rastegar K, Maghsoudi N, Moosavi M. Insulin protects against Abeta-induced spatial memory impairment, hippocampal apoptosis and MAPKs signaling disruption. Neuropharmacology. 2014 Oct;85:113–20. doi:10.1016/j.neuropharm.2014.01.036
  • Schoemaker D, Gauthier S, Pruessner JC. Recollection and familiarity in aging individuals with mild cognitive impairment and Alzheimer's disease: a literature review. Neuropsychol Rev. 2014 Sep;24(3):313–31. doi:10.1007/s11065-014-9265-6
  • Wolk DA, Dunfee KL, Dickerson BC, Aizenstein HJ, DeKosky ST. A medial temporal lobe division of labor: insights from memory in aging and early Alzheimer disease. Hippocampus. 2011 May;21(5):461–66. doi:10.1002/hipo.20779
  • Hashimoto M, Katakura M, Hossain S, Rahman A, Shimada T, Shido O. Docosahexaenoic acid withstands the Abeta(25-35)-induced neurotoxicity in SH-SY5Y cells. J Nutr Biochem. 2011 Jan;22(1):22–29. doi:10.1016/j.jnutbio.2009.11.005
  • Lung CC, Fleisher JH, Meinke G, Pinnas JL. Immunochemical properties of malondialdehyde-protein adducts. J Immunol Methods. 1990 Mar 27;128(1):127–32. doi:10.1016/0022-1759(90)90471-7
  • Sinha M, Bhowmick P, Banerjee A, Chakrabarti S. Antioxidant role of amyloid beta protein in cell-free and biological systems: implication for the pathogenesis of Alzheimer disease. Free Radic Biol Med. 2013 Mar;56:184–92. doi:10.1016/j.freeradbiomed.2012.09.036
  • Mitra S, Prasad P, Chakraborty S. A unified view of assessing the pro-oxidant versus antioxidant nature of amyloid beta conformers. Chembiochem. 2018 Nov 16;19(22):2360–71. doi:10.1002/cbic.201800446
  • Scheltens P, Strooper D, Kivipelto B, Holstege M, Chetelat H, Teunissen G, E C, et al. Alzheimer's disease. Lancet. 2021 Apr 24;397(10284):1577–90. doi:10.1016/S0140-6736(20)32205-4
  • Misrani A, Tabassum S, Yang L. Mitochondrial dysfunction and oxidative stress in Alzheimer's disease. Front Aging Neurosci. 2021;13:617588. doi:10.3389/fnagi.2021.617588
  • Hartman RE, Ross DM. Effects and mechanisms of actions of phytochemicals on Alzheimer's disease neuropathology. Front Biosci (Elite Ed). 2018 Jan 1;10(2):300–33. doi:10.2741/e824
  • Lemkul JA, Bevan DR. Destabilizing Alzheimer's Abeta(42) protofibrils with morin: mechanistic insights from molecular dynamics simulations. Biochemistry. 2010 May 11;49(18):3935–46. doi:10.1021/bi1000855
  • Kita M, Uchida S, Yamada K, Ano Y. Anxiolytic effects of theaflavins via dopaminergic activation in the frontal cortex. Biosci Biotechnol Biochem. 2019 Jun;83(6):1157–62. doi:10.1080/09168451.2019.1584523
  • Lee B, Sur B, Kwon S, Yeom M, Shim I, Lee H, et al. Chronic administration of catechin decreases depression and anxiety-like behaviors in a rat model using chronic corticosterone injections. Biomol Ther (Seoul). 2013 Jul 30;21(4):313–22. doi:10.4062/biomolther.2013.004
  • Takeuchi T, Duszkiewicz AJ, Sonneborn A, Spooner PA, Yamasaki M, Watanabe M, et al. Locus coeruleus and dopaminergic consolidation of everyday memory. Nature. 2016 Sep 15;537(7620):357–62. doi:10.1038/nature19325
  • Mansouri MT, Soltani M, Naghizadeh B, Farbood Y, Mashak A, Sarkaki A. A possible mechanism for the anxiolytic-like effect of gallic acid in the rat elevated plus maze. Pharmacol Biochem Behav. 2014 Feb;117:40–46. doi:10.1016/j.pbb.2013.12.011
  • Henneh IT, Ahlidja W, Alake J, Mohammed H, Boapeah SO, Kwabil A, et al. Acute toxicity profile and gastroprotective potential of ethanolic leaf extract of Manihot esculenta Crantz. Scientific African. 2022 Sep 1;17:e01284. doi:10.1016/j.sciaf.2022.e01284
  • Assih M, Aboudoulatif D, Dougnon V, Kossi M, Lawson-Evi P, Kwashi E-G, et al. Toxicological study of Manihot esculenta Crantz (Euphorbiaceae) leaf extracts. Br J Med Health Res. 2021;04/25:8.
  • Rivadeneyra-Dominguez E, Rodriguez-Landa JF. Preclinical and clinical research on the toxic and neurological effects of cassava (Manihot esculenta Crantz) consumption. Metab Brain Dis. 2020 Jan;35(1):65–74. doi:10.1007/s11011-019-00522-0
  • Selvaraj MG, Montoya PM, Atanbori J, French AP, Pridmore T. A low-cost aeroponic phenotyping system for storage root development: unravelling the below-ground secrets of cassava (Manihot esculenta). Plant Methods. 2019;15:131. doi:10.1186/s13007-019-0517-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.