Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Latest Articles
224
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Does hazelnut consumption affect brain health and function against neurodegenerative diseases?

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & show all

References

  • Willett WC. Diet and health: what should we eat? Science. 1994;264(5158):532–7.
  • Diplock AT. Antioxidant nutrients and disease prevention: an overview. Am J Clin Nutr. 1991;53(Suppl. 1):189S–93S.
  • Cena H, Calder PC. Defining a healthy diet: evidence for the role of contemporary dietary patterns in health and disease. Nutrients. 2020;12(2):334.
  • Alkhatib A, Tuomilehto J. Lifestyle diabetes prevention. Encyclopedia of endocrine diseases. Cham: Elsevier; 2019. 148–59.
  • Wiseman MJ. Nutrition and cancer: prevention and survival. Br J Nut. 2019;122(5):481–7.
  • Eilat-Adar S, Sinai T, Yosefy C, Henkin Y. Nutritional recommendations for cardiovascular disease prevention. Nutrients. 2013;5(9):3646–83.
  • Ros E. Health benefits of nut consumption. Nutrients. 2010;2(7):652–82.
  • Essa MM, Qoronfleh MW. Personalized food intervention and therapy for autism spectrum disorder management. Cham: Springer; 2020.
  • Fischer S, Glei M. Potential health benefits of nuts. Ernahr Umsch. 2013;60(12):206–15.
  • Ziemke F, Mantzoros CS. Adiponectin in insulin resistance: lessons from translational research. Am J Clin Nutr. 2010;91(1):258S–61S.
  • Mantzoros CS, Williams CJ, Manson JE, Meigs JB, Hu FB. Adherence to the Mediterranean dietary pattern is positively associated with plasma adiponectin concentrations in diabetic women. Am J Clin Nutr. 2006;84(2):328–35.
  • Jackson CL, Hu FB. Long-term associations of nut consumption with body weight and obesity. Am J Clin Nutr. 2014;100(suppl_1):408S–11S.
  • Falasca M, Casari I, Maffucci T. Cancer chemoprevention with nuts. J Natl Cancer Inst. 2014;106(9):dju238.
  • Bae Y-J, Kim M-H, Choi M-K. Dietary mineral intake from nuts and its relationship to hypertension among Korean adults. Biol Trace Elem Res. 2022;200(8):3519–28.
  • Damasceno NRT, Pérez-Heras A, Serra M, Cofán M, Sala-Vila A, Salas-Salvadó J, et al. Crossover study of diets enriched with virgin olive oil, walnuts or almonds. effects on lipids and other cardiovascular risk markers. Nutr Metab Cardiovasc Dis. 2011;21:S14–S20.
  • Adashek JJ, Redding D. A pilot study on the effects of nut consumption on cardiovascular biomarkers. Cureus. 2020;12(6):1–7.
  • Vinson JA, Cai Y. Nuts, especially walnuts, have both antioxidant quantity and efficacy and exhibit significant potential health benefits. Food Funct. 2012;3(2):134–40.
  • Ros E, Sala-Vila A. Nuts and brain health: cognition, depression, and neurodegenerative diseases. Health benefits of nuts and dried fruits. Boca Raton: CRC Press; 2020. p. 261–88.
  • Przedborski S, Vila M, Jackson-Lewis V. Series introduction: neurodegeneration: what is it and where are we? J Clin Invest. 2003;111(1):3–10.
  • Kovacs GG. Molecular pathology of neurodegenerative diseases: principles and practice. J Clin Pathol. 2019;72(11):725–35.
  • Ross CA, Poirier MA. Protein aggregation and neurodegenerative disease. Nat Med. 2004;10(Suppl 7):S10–S7.
  • Chaudhuri A. Multiple sclerosis is primarily a neurodegenerative disease. J Neural Transm. 2013;120:1463–6.
  • Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol Neurodegener. 2020;15(1):1–37.
  • Wyss-Coray T, Rogers J. Inflammation in Alzheimer disease—a brief review of the basic science and clinical literature. Cold Spring Harb Perspect Med. 2012;2(1):a006346.
  • Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, et al. Parkinson disease. Nat Rev Dis Primers. 2017 Mar 23;3(1):1–21.
  • Tufekci KU, Meuwissen R, Genc S, Genc K. Inflammation in Parkinson’s disease. Adv Protein Chem Struct Biol. 2012;88:69–132.
  • Liu J, Wang F. Role of neuroinflammation in amyotrophic lateral sclerosis: cellular mechanisms and therapeutic implications. Front Immunol. 2017;8:1005.
  • Boĭko A, Favorova O. Multiple sclerosis: molecular and cellular mechanisms. Mol Biol. 1995;29(4):727–49.
  • Walker FO. Huntington’s disease. Lancet. 2007;369(9557):218–28.
  • Joseph J, Cole G, Head E, Ingram D. Nutrition, brain aging, and neurodegeneration. J Neurosci. 2009;29(41):12795–801.
  • Bahaeddin Z, Yans A, Khodagholi F, Hajimehdipoor H, Sahranavard S. Hazelnut and neuroprotection: improved memory and hindered anxiety in response to intra-hippocampal Aβ injection. Nutr Neurosci. 2017;20(6):317–26.
  • Silvestri C, Bacchetta L, Bellincontro A, Cristofori V. Advances in cultivar choice, hazelnut orchard management, and nut storage to enhance product quality and safety: an overview. J Sci Food Agric. 2021;101(1):27–43.
  • Bottone A, Cerulli A, D'Urso G, Masullo M, Montoro P, Napolitano A, et al. Plant specialized metabolites in hazelnut (Corylus avellana) kernel and byproducts: an update on chemistry, biological activity, and analytical aspects. Planta Med. 2019;85(11/12):840–55.
  • Papanastasopoulos P, Stebbing J. Nuts and cancer: where are we now? Lancet Oncol. 2013;14(12):1161.
  • Mehlenbacher SA. Hazelnuts (Corylus). genetic resources of temperate fruit and Nut crops. Acta Hort. 1991;290:63–109.
  • Dobhal K, Singh N, Semwal A, Negi A. A brief review on: hazelnuts. Int J Recent Sci Res. 2018;9(1):23680–4.
  • Erdogan V, Mehlenbacher SA. Interspecific hybridization in hazelnut (Corylus). J Am Soc Hortic Sci. 2000;125(4):489–97.
  • Germain E. The reproduction of hazelnut (Corylus avellana L.): a review. III Inter Congr Hazelnut 1992 Sep 14;351:195–210.
  • Organization WH. WHO international standard terminologies on traditional medicine in the western pacific region; 2007.
  • Organization WH. National policy on traditional medicine and regulation of herbal medicines: report of a WHO global survey. Geneva: World Health Organization; 2005.
  • Kordafshari G, Kenari HM, Esfahani MM, Ardakani MRS, Keshavarz M, Nazem E, et al. Nutritional aspects to prevent heart diseases in traditional Persian medicine. J Evid Based Complementary Altern Med. 2015;20(1):57–64.
  • Karimi Z, Firouzi M, Dadmehr M, Javad-Mousavi SA, Bagheriani N, Sadeghpour O. Almond as a nutraceutical and therapeutic agent in Persian medicine and modern phytotherapy: a narrative review. Phytother Res. 2021;35(6):2997–3012.
  • Ibn-e-Sina A. Al-qanun fit-tib [The canon of medicine]. Beirut, Lebanon: Alaalami Beirut lib Press; 2005.
  • Tajadini H, Choopani R, Saifadini R. Lifestyle methods for prevention of Alzheimer’s disease from the perspective of traditional Persian medicine. J Evid Based Complementary Altern Med. 2016;21(3):243–5.
  • Iranshahy M, Javadi B. Diet therapy for the treatment of Alzheimer’s disease in view of traditional Persian medicine: a review. Iran J Basic Med Sci. 2019;22(10):1102.
  • Gorji N, Moeini R, Memariani Z. Almond, hazelnut and walnut, three nuts for neuroprotection in Alzheimer’s disease: a neuropharmacological review of their bioactive constituents. Pharmacol Res. 2018;129:115–27.
  • Borres MP, Sato S, Ebisawa M. Recent advances in diagnosing and managing nut allergies with focus on hazelnuts, walnuts, and cashew nuts. World Allergy Organ J. 2022;15(4):100641.
  • Şeker ME. Elemental analysis and health risk assessment of different hazelnut varieties (Corylus avellana L.) collected from giresun-Turkey. J Food Compost Anal 2023;122:105475.
  • Salvatore MM, Andolfi A, Nicoletti R. Mycotoxin contamination in hazelnut: current status, analytical strategies, and future prospects. Toxins. 2023;15(2):1–21.
  • Alasalvar C, Shahidi F, Liyanapathirana CM, Ohshima T. Turkish tombul hazelnut (Corylus avellana L.). 1. Compositional characteristics. J Agric Food Chem. 2003;51(13):3790–6.
  • Alasalvar C, Shahidi F. Tree nuts: Composition, phytochemicals, and health effects. Chapter 12, Compositional characteristics and health effects of hazelnut (Corylus avellana L.). Boca Raton: CRC Press; 2008. p. 199–228.
  • Brufau G, Boatella J, Rafecas M. Nuts: source of energy and macronutrients. Br J Nutr. 2006;96(S2):S24–S8.
  • Cosmulescu S, Mihai B, Trandafir I. The mineral source for human nutrition of nuts in different hazelnut (Corylus avellana L.) cultivars. Not Bot Horti Agrobot Cluj Napoca. 2013;41(1):250–4.
  • John T, Samuel B, Abolaji O, Folashade O, Oyetooke A, Oluwatosin F. Functional foods and bioactive compounds: roles in the prevention, treatment and management of neurodegenerative diseases. GSC Biol Pharm Sci. 2020;11(2):297–313.
  • Rai SN, Singh P, Steinbusch HW, Vamanu E, Ashraf G, Singh MP. The role of vitamins in neurodegenerative disease: an update. Biomedicines. 2021;9(10):1284.
  • DeSalvo KB, Olson R, KO C. Dietary guidelines for Americans. Jama. 2016;315(5):457–8.
  • Taş NG, Gökmen V. Profiling triacylglycerols, fatty acids and tocopherols in hazelnut varieties grown in Turkey. J Food Compost Anal. 2015;44:115–21.
  • Bălașa AF, Chircov C, Grumezescu AM. Marine biocompounds for neuroprotection—a review. Mar Drugs. 2020;18(6):290.
  • Delgado-Zamarreño MM, Fernández-Prieto C, Bustamante-Rangel M, Pérez-Martín L. Determination of tocopherols and sitosterols in seeds and nuts by QuEChERS-liquid chromatography. Food Chem. 2016;192:825–30.
  • Fang F, HO CT, Sang S, Rosen RT. Determination of sphingolipids in nuts and seeds by a single quadrupole liquid chromatography–mass spectrometry method. J Food Lipids. 2005;12(4):327–43.
  • Włodarek D. Role of ketogenic diets in neurodegenerative diseases (Alzheimer’s disease and Parkinson’s disease). Nutrients. 2019;11(1):169.
  • Alessenko AV, Albi E. Exploring sphingolipid implications in neurodegeneration. Front Neurol. 2020;11:437.
  • Bhagwat S, Haytowitz DB, Holden JM. USDA database for the flavonoid content of selected foods, release 3. Beltsville, MD, USA: US department of agriculture; 2011, 159.
  • Bolling BW, McKay DL, Blumberg JB. The phytochemical composition and antioxidant actions of tree nuts. Asia Pac J Clin Nutr. 2010;19(1):117.
  • Jakopic J, Petkovsek MM, Likozar A, Solar A, Stampar F, Veberic R. HPLC–MS identification of phenols in hazelnut (Corylus avellana L.) kernels. Food Chem. 2011;124(3):1100–6.
  • Daglia M, Di Lorenzo A, Nabavi F, Talas ZS, Nabavi ZM. Polyphenols: well beyond the antioxidant capacity: gallic acid and related compounds as neuroprotective agents: you are what you eat! Curr Pharm Biotechnol. 2014;15(4):362–72.
  • Singh NA, Mandal AKA, Khan ZA. Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG). Nutr J. 2015;15:1–17.
  • Sun W, Shahrajabian MH, Cheng Q. Epigallocatechin gallate, a unique natural compound with tremendous health benefits. ROCE. 2019;14(1):52–64.
  • Köksal Aİ, Artik N, Şimşek A, Güneş N. Nutrient composition of hazelnut (Corylus avellana L.) varieties cultivated in Turkey. Food Chem. 2006;99(3):509–15.
  • Venkatachalam M, Sathe SK. Chemical composition of selected edible nut seeds. J Agric Food Chem. 2006;54(13):4705–14.
  • Fernandes GD, Gómez-Coca RB, Pérez-Camino M, Moreda W, Barrera-Arellano D. Chemical characterization of major and minor compounds of nut oils: almond, hazelnut, and pecan nut. J. Chem. 2017;2017:1–11.
  • Di Michele A, Pagano C, Allegrini A, Blasi F, Cossignani L, Raimo ED, et al. Hazelnut shells as source of active ingredients: extracts preparation and characterization. Molecules. 2021;26(21):6607.
  • Yuan B, Lu M, Eskridge KM, Isom LD, Hanna MA. Extraction, identification, and quantification of antioxidant phenolics from hazelnut (Corylus avellana L.) shells. Food Chem. 2018;244:7–15.
  • Smith MA. Alzheimer disease. Int Rev Neurobiol. 1998;42:1–54.
  • Rajasekhar K, Chakrabarti M, Govindaraju T. Function and toxicity of amyloid beta and recent therapeutic interventions targeting amyloid beta in Alzheimer’s disease. Chem Commun. 2015;51(70):13434–50.
  • Gadhave K, Kumar D, Uversky VN, Giri R. A multitude of signaling pathways associated with Alzheimer’s disease and their roles in AD pathogenesis and therapy. Med Res Rev. 2021;41(5):2689–745.
  • Muralidar S, Ambi SV, Sekaran S, Thirumalai D, Palaniappan B. Role of tau protein in Alzheimer's disease: the prime pathological player. Int J Biol Macromol. 2020;163:1599–617.
  • Iqbal K, Gong C-X, Liu F. Hyperphosphorylation-induced tau oligomers. Front Neurol. 2013;4:112.
  • Thinakaran G, Koo EH. Amyloid precursor protein trafficking, processing, and function. J Biol Chem. 2008;283(44):29615–9.
  • O’brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci. 2011;34:185.
  • Townsend M, Shankar GM, Mehta T, Walsh DM, Selkoe DJ. Effects of secreted oligomers of amyloid β-protein on hippocampal synaptic plasticity: a potent role for trimers. J Physiol. 2006;572(2):477–92.
  • Christen Y. Oxidative stress and Alzheimer disease. Am J Clin Nutr. 2000;71(2):621S–9S.
  • Nunomura A, Castellani RJ, Zhu X, Moreira PI, Perry G, Smith MA. Involvement of oxidative stress in Alzheimer disease. J Neuropathol Exp Neurol. 2006;65(7):631–41.
  • Gella A, Durany N. Oxidative stress in Alzheimer disease. Cell Adh Migr. 2009;3(1):88–93.
  • Meraz-Ríos MA, Toral-Rios D, Franco-Bocanegra D, Villeda-Hernández J, Campos-Peña V. Inflammatory process in Alzheimer’s disease. Front. Integr. Neurosci. 2013;7:59.
  • Heppner FL, Ransohoff RM, Becher B. Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci. 2015;16(6):358–72.
  • Luchsinger JA, Mayeux R. Dietary factors and Alzheimer’s disease. Lancet Neurol. 2004;3(10):579–87.
  • Koppal T, Subramaniam R, Drake J, Prasad MR, Dhillon H, Butterfield DA. Vitamin E protects against Alzheimer’s amyloid peptide (25–35)-induced changes in neocortical synaptosomal membrane lipid structure and composition. Brain Res. 1998;786(1-2):270–3.
  • Solfrizzi V, Panza F, Frisardi V, Seripa D, Logroscino G, Imbimbo BP, et al. Diet and Alzheimer’s disease risk factors or prevention: the current evidence. Expert Rev Neurother. 2011;11(5):677–708.
  • Trichopoulou A, Lagiou P. Healthy traditional Mediterranean diet: an expression of culture, history, and lifestyle. Nutr Rev. 1997;55(11):383–9.
  • Solfrizzi V, Colacicco AM, D’Introno A, Capurso C, Torres F, Rizzo C, et al. Dietary intake of unsaturated fatty acids and age-related cognitive decline: a 8.5-year follow-up of the Italian longitudinal study on aging. Neurobiol Aging. 2006;27(11):1694–704.
  • Boudrault C, Bazinet RP, Ma DW. Experimental models and mechanisms underlying the protective effects of n-3 polyunsaturated fatty acids in Alzheimer’s disease. J Nutr Biochem. 2009;20(1):1–10.
  • Gwon A-R, Park J-S, Park J-H, Baik S-H, Jeong H-Y, Hyun D-H, et al. Selenium attenuates Aβ production and Aβ-induced neuronal death. Neurosci Lett. 2010;469(3):391–5.
  • Brickman AM, Khan UA, Provenzano FA, Yeung L-K, Suzuki W, Schroeter H, et al. Enhancing dentate gyrus function with dietary flavanols improves cognition in older adults. Nat Neurosci. 2014;17(12):1798–803.
  • Phan HT, Samarat K, Takamura Y, Azo-Oussou AF, Nakazono Y, MdC V. Polyphenols modulate Alzheimer’s amyloid beta aggregation in a structure-dependent manner. Nutrients. 2019;11(4):756.
  • Ayaz M, Sadiq A, Junaid M, Ullah F, Ovais M, Ullah I, et al. Flavonoids as prospective neuroprotectants and their therapeutic propensity in aging associated neurological disorders. Front Aging Neurosci. 2019;11:155.
  • Bolling BW, Chen C-YO, McKay DL, Blumberg JB. Tree nut phytochemicals: composition, antioxidant capacity, bioactivity, impact factors. A systematic review of almonds, Brazils, cashews, hazelnuts, macadamias, pecans, pine nuts, pistachios and walnuts. Nutr Res Rev. 2011;24(2):244–75.
  • Schroeter H, Spencer JP, Rice-Evans C, Williams RJ. Flavonoids protect neurons from oxidized low-density-lipoprotein-induced apoptosis involving c-Jun N-terminal kinase (JNK), c-Jun and caspase-3. Biochem J. 2001;358(3):547–57.
  • Hussain G, Zhang L, Rasul A, Anwar H, Sohail MU, Razzaq A, et al. Role of plant-derived flavonoids and their mechanism in attenuation of Alzheimer’s and Parkinson’s diseases: an update of recent data. Molecules. 2018;23(4):814.
  • Vafeiadou K, Vauzour D, Lee HY, Rodriguez-Mateos A, Williams RJ, Spencer JP. The citrus flavanone naringenin inhibits inflammatory signalling in glial cells and protects against neuroinflammatory injury. Arch Biochem Biophys. 2009;484(1):100–9.
  • Spencer JP, Vafeiadou K, Williams RJ, Vauzour D. Neuroinflammation: modulation by flavonoids and mechanisms of action. Mol Aspects Med. 2012;33(1):83–97.
  • Wang L, Zeng R, Pang X, Gu Q, Tan W. The mechanisms of flavonoids inhibiting conformational transition of amyloid-β 42 monomer: a comparative molecular dynamics simulation study. RSC Adv. 2015;5(81):66391–402.
  • Ramezani M, Meymand AZ, Khodagholi F, Kamsorkh HM, Asadi E, Noori M, et al. A role for flavonoids in the prevention and/or treatment of cognitive dysfunction, learning, and memory deficits: a review of preclinical and clinical studies. Nutr Neurosci. 2022;156–172:1–17.
  • Lagoa R, Graziani I, Lopez-Sanchez C, Garcia-Martinez V, Gutierrez-Merino C. Complex I and cytochrome c are molecular targets of flavonoids that inhibit hydrogen peroxide production by mitochondria. Biochim Biophys Acta Bioenerg. 2011;1807(12):1562–72.
  • Glenn JM, Madero EN, Bott NT. Dietary protein and amino acid intake: links to the maintenance of cognitive health. Nutrients. 2019;11(6):1315.
  • Balestrino R, Schapira A. Parkinson disease. Eur J Neurol. 2020;27(1):27–42.
  • Schroeders U, Zimmermann J, Wicke T, Schaumburg M, Lang E, Trenkwalder C, et al. Dynamic interplay of cognitive functioning and depressive symptoms in patients with Parkinson’s disease. Neuropsychology. 2022;36(4):266–78.
  • Zhang TM, Yu SY, Guo P, Du Y, Hu Y, Piao YS, et al. Nonmotor symptoms in patients with Parkinson disease: a cross-sectional observational study. Medicine. 2016;95(50):e5400.
  • Dexter DT, Jenner P. Parkinson disease: from pathology to molecular disease mechanisms. Free Radic Biol Med. 2013;62:132–44.
  • Mullin S, Schapira AH. Pathogenic mechanisms of neurodegeneration in Parkinson disease. Neurol Clin. 2015;33(1):1–17.
  • Kam T-I, Hinkle JT, Dawson TM, Dawson VL. Microglia and astrocyte dysfunction in Parkinson’s disease. Neurobiol Dis. 2020;144:105028.
  • Knight E, Geetha T, Burnett D, Babu JR. The role of diet and dietary patterns in Parkinson’s disease. Nutrients. 2022;14(21):4472.
  • Ghiglieri V, Calabrese V, Calabresi P. Alpha-synuclein: from early synaptic dysfunction to neurodegeneration. Front Neurol. 2018;9:295.
  • Javed H, Nagoor Meeran MF, Azimullah S, Adem A, Sadek B, Ojha SK. Plant extracts and phytochemicals targeting α-synuclein aggregation in Parkinson’s disease models. Front Pharmacol. 2019;9:1555.
  • Magalingam KB, Radhakrishnan AK, Haleagrahara N. Protective mechanisms of flavonoids in Parkinson’s disease. Oxid Med Cell Longev. 2015;2015:1–14.
  • Shen L. Associations between B vitamins and Parkinson’s disease. Nutrients. 2015;7(9):7197–208.
  • Ellwanger JH, Franke SI, Bordin DL, Pra D, Henriques JA. Biological functions of selenium and its potential influence on Parkinson’s disease. An Acad Bras Cienc. 2016;88:1655–74.
  • Ellwanger JH, Molz P, Dallemole DR, dos Santos AP, Müller TE, Cappelletti L, et al. Selenium reduces bradykinesia and DNA damage in a rat model of Parkinson’s disease. Nutrition. 2015;31(2):359–65.
  • De Lau L, Bornebroek M, Witteman J, Hofman A, Koudstaal P, Breteler M. Dietary fatty acids and the risk of Parkinson disease: the Rotterdam study. Neurology. 2005;64(12):2040–5.
  • Hashimoto T, Nishi K, Nagasao J, Tsuji S, Oyanagi K. Magnesium exerts both preventive and ameliorating effects in an in vitro rat Parkinson disease model involving 1-methyl-4-phenylpyridinium (MPP+) toxicity in dopaminergic neurons. Brain Res. 2008;1197:143–51.
  • Miyake Y, Tanaka K, Fukushima W, Sasaki S, Kiyohara C, Tsuboi Y, et al. Dietary intake of metals and risk of Parkinson's disease: a case-control study in Japan. J Neurol Sci. 2011;306(1–2):98–102.
  • Boillée S, Velde CV, Cleveland DW. ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron. 2006;52(1):39–59.
  • Clarke BE, Patani R. The microglial component of amyotrophic lateral sclerosis. Brain. 2020;143(12):3526–39.
  • Cho H, Shukla S. Role of edaravone as a treatment option for patients with amyotrophic lateral sclerosis. Pharmaceuticals. 2020;14(1):29.
  • Klemann CJ, Visser JE, Van Den Bosch L, Martens G, Poelmans G. Integrated molecular landscape of amyotrophic lateral sclerosis provides insights into disease etiology. Brain Pathol 2018;28(2):203–11.
  • Jin Y, Oh K, Oh S-i, Baek H, Kim SH, Park Y. Dietary intake of fruits and beta-carotene is negatively associated with amyotrophic lateral sclerosis risk in Koreans: a case-control study. Nutr Neurosci. 2014;17(3):104–8.
  • Okamoto K, Kihira T, Kobashi G, Washio M, Sasaki S, Yokoyama T, et al. Fruit and vegetable intake and risk of amyotrophic lateral sclerosis in Japan. Neuroepidemiology. 2009;32(4):251–6.
  • Zeng Y, Song J, Zhang M, Wang H, Zhang Y, Suo H. Comparison of in vitro and in vivo antioxidant activities of six flavonoids with similar structures. Antioxidants. 2020;9(8):732.
  • Pazdro R, Burgess JR. The role of vitamin E and oxidative stress in diabetes complications. Mech Ageing Dev. 2010;131(4):276–86.
  • Hong J-H, Kim M-J, Park M-R, Kwag O-G, Lee I-S, Byun BH, et al. Effects of vitamin E on oxidative stress and membrane fluidity in brain of streptozotocin-induced diabetic rats. Clin Chim Acta. 2004;340(1–2):107–15.
  • Veldink JH, Kalmijn S, Groeneveld G-J, Wunderink W, Koster A, de Vries JH, et al. Intake of polyunsaturated fatty acids and vitamin E reduces the risk of developing amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2007;78(4):367–71.
  • Ginanjar E, Setiati S, Setiyohadi B. Vitamin D and autoimmune disease. Acta Med Indones. 2007;39(3):133–41.
  • Khan H, Sureda A, Belwal T, Çetinkaya S, Süntar İ, Tejada S, et al. Polyphenols in the treatment of autoimmune diseases. Autoimmun Rev. 2019;18(7):647–57.
  • Li X, Bi X, Wang S, Zhang Z, Li F, Zhao AZ. Therapeutic potential of ω−3 polyunsaturated fatty acids in human autoimmune diseases. Front Immunol; 2019;10:2241.
  • Xia K, Wang Y, Zhang L, Tang L, Zhang G, Huang T, et al. Dietary-derived essential nutrients and amyotrophic lateral sclerosis: a two-sample Mendelian randomization study. Nutrients. 2022;14(5):920.
  • Guan J-Z, Guan W-P, Maeda T. Vitamin E administration erases an enhanced oxidation in multiple sclerosis. Can J Physiol Pharmacol. 2018;96(11):1181–3.
  • Goldenberg MM. Multiple sclerosis review. Pharm Therapeutic. 2012;37(3):175.
  • Gilgun-Sherki Y, Melamed E, Offen D. The role of oxidative stress in the pathogenesis of multiple sclerosis: the need for effective antioxidant therapy. J Neurol. 2004;251(3):261–8.
  • Zéphir H. Progress in understanding the pathophysiology of multiple sclerosis. Rev Neurol. 2018;174(6):358–63.
  • Voet S, Prinz M, van Loo G. Microglia in central nervous system inflammation and multiple sclerosis pathology. Trends Mol Med. 2019;25(2):112–23.
  • Evers I, Heerings M, de Roos N, Jongen P, Visser L. Adherence to dietary guidelines is associated with better physical and mental quality of life: results from a cross-sectional survey among 728 Dutch MS patients. Nutr Neurosci. 2022;25(8):1633–40.
  • Payne A. Nutrition and diet in the clinical management of multiple sclerosis. J Hum Nutr Diet. 2001;14(5):349–57.
  • Swank R, Dugan BB. Effect of low saturated fat diet in early and late cases of multiple sclerosis. Lancet. 1990;336(8706):37–9.
  • Mische LJ, Mowry EM. The evidence for dietary interventions and nutritional supplements as treatment options in multiple sclerosis: a review. Curr Treat Options Neurol. 2018;20(4):1–11.
  • Bayat P, Farshchi M, Yousefian M, Mahmoudi M, Yazdian-Robati R. Flavonoids, the compounds with anti-inflammatory and immunomodulatory properties, as promising tools in multiple sclerosis (MS) therapy: a systematic review of preclinical evidence. Int Immunopharmacol. 2021;95:107562.
  • Toledo J, Fraga-Silva T, Borim PA, De Oliveira LRC, Oliveira E, Périco LL, et al. Organic selenium reaches the central nervous system and downmodulates local inflammation: A complementary therapy for multiple sclerosis? Front Immunol. 2020;11:571844.
  • Calderón-Ospina CA, Nava-Mesa MO. B vitamins in the nervous system: current knowledge of the biochemical modes of action and synergies of thiamine, pyridoxine, and cobalamin. CNS Neurosci Ther. 2020;26(1):5–13.
  • Collins G. Glial cell changes in the brain stem of thiamine-deficient rats. Am. J. Pathol. 1967;50(5):791.
  • Schwarz S, Leweling H. Multiple sclerosis and nutrition. Mult Scler J. 2005;11(1):24–32.
  • Nieves J, Cosman F, Herbert J, Shen V, Lindsay R. High prevalence of vitamin D deficiency and reduced bone mass in multiple sclerosis. Neurology. 1994;44(9):1687.
  • Bates GP, Dorsey R, Gusella JF, Hayden MR, Kay C, Leavitt BR, et al. Huntington disease. Nat Rev Dis Primers. 2015;1(1):1–21.
  • Palpagama TH, Waldvogel HJ, Faull RL, Kwakowsky A. The role of microglia and astrocytes in Huntington’s disease. Front Mol Neurosci. 2019;12:258.
  • Ghosh R, Tabrizi SJ. Huntington disease. Handb Clin Neurol. 2018;147:255–78.
  • Żukiewicz-Sobczak W, Król R, Wróblewska P, Piątek J, Gibas-Dorna M. Huntington disease–principles and practice of nutritional management. Neurol Neurochir Pol. 2014;48(6):442–8.
  • Khan F, Garg V, Singh A, Kumar T. Role of free radicals and certain antioxidants in the management of Huntington’s disease: a review. J Anal Pharm Res. 2018;7:386–92.
  • Miyamoto M, Murphy TH, Schnaar RL, Coyle JT. Antioxidants protect against glutamate-induced cytotoxicity in a neuronal cell line. J Pharmacol Exp Ther. 1989;250(3):1132–40.
  • Cong W, Bai R, Li Y-F, Wang L, Chen C. Selenium nanoparticles as an efficient nanomedicine for the therapy of Huntington’s disease. ACS Appl Mater Interfaces. 2019;11(38):34725–35.
  • Khan H, Ullah H, Tundis R, Belwal T, Devkota HP, Daglia M, et al. Dietary flavonoids in the management of Huntington’s disease: mechanism and clinical perspective. EFood. 2020;1(1):38–52.
  • Sandhir R, Mehrotra A. Quercetin supplementation is effective in improving mitochondrial dysfunctions induced by 3-nitropropionic acid: implications in Huntington’s disease. Biochim Biophys Acta Mol Basis Dis. 2013;1832(3):421–30.
  • Olofinnade AT, Onaolapo AY, Onaolapo OJ, Olowe OA, Mollica A, Zengin G, et al. Corylus avellana L. modulates neurobehaviour and brain chemistry following high-fat diet. Front Biosci. 2020;26(3):537–51.
  • Olofinnade AT, Onaolapo AY, Onaolapo OJ, Olowe OA. Hazelnut modulates neurobehaviour and ameliorates ageing-induced oxidative stress, and caspase-3-mediated apoptosis in mice. Curr Aging Sci. 2021;14(2):154–62.
  • Radi E, Formichi P, Battisti C, Federico A. Apoptosis and oxidative stress in neurodegenerative diseases. J Alzheimers Dis. 2014;42(s3):S125–S52.
  • Esposito L, Raber J, Kekonius L, Yan F, Yu G-Q, Bien-Ly N, et al. Reduction in mitochondrial superoxide dismutase modulates Alzheimer’s disease-like pathology and accelerates the onset of behavioral changes in human amyloid precursor protein transgenic mice. J Neurosci. 2006;26(19):5167–79.
  • White N, Naldoza-Drake P, Black K, Scullion L, Machado L. Can improving the nutritional content of bread enhance cognition? Cognitive outcomes from a randomized controlled trial. J Cogn Enhanc. 2020;4:167–78.
  • Codella R, Benedini S, Paini S, Caumo A, Adamo M, Terruzzi I, et al. Effect of sugar versus mixed breakfast on metabolic and neurofunctional responses in healthy individuals. J Diab. Res. 2017;2017:1–10.
  • Friedman NP, Robbins TW. The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology. 2022;47(1):72–89.
  • Butler PM, Chiong W. Neurodegenerative disorders of the human frontal lobes. Handb Clin Neurol. 2019;163:391–410.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.