Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Latest Articles
123
Views
0
CrossRef citations to date
0
Altmetric
Review Article

The impact of flavonoids and BDNF on neurogenic process in various physiological/pathological conditions including ischemic insults: a narrative review

, , &

References

  • Ojaghihaghighi S, Vahdati SS, Mikaeilpour A, et al. Comparison of neurological clinical manifestation in patients with hemorrhagic and ischemic stroke. World J Emerg Med. 2017;8:34–8. doi:10.5847/wjem.j.1920-8642.2017.01.006
  • Prabhakaran S, Ruff I, Bernstein RA. Acute stroke intervention: a systematic review. JAMA. 2015;313:1451–62. doi:10.1001/jama.2015.3058
  • Dorado L, Millan M, Davalos A. Reperfusion therapies for acute ischemic stroke: an update. Curr Cardiol Rev. 2014;10:327–35. doi:10.2174/1573403X10666140320144637
  • Rahman AA, Amruta N, Pinteaux E, et al. Neurogenesis after stroke: a therapeutic perspective. Transl Stroke Res. 2021;12:1–14. doi:10.1007/s12975-020-00841-w
  • Culig L, Chu X, Bohr VA. Neurogenesis in aging and age-related neurodegenerative diseases. Ageing Res Rev. 2022;78:101636. doi:10.1016/j.arr.2022.101636
  • Hagg T. From neurotransmitters to neurotrophic factors to neurogenesis. Neuroscientist. 2009;15:20–7. doi:10.1177/1073858408324789
  • Terranova JI, Ogawa SK, Kitamura T. Adult hippocampal neurogenesis for systems consolidation of memory. Behav Brain Res. 2019;372:112035. doi:10.1016/j.bbr.2019.112035
  • Treves A, Tashiro A, Witter MP, et al. What is the mammalian dentate gyrus good for? Neuroscience. 2008;154:1155–72. doi:10.1016/j.neuroscience.2008.04.073
  • Anacker C, Luna VM, Stevens GS, et al. Hippocampal neurogenesis confers stress resilience by inhibiting the ventral dentate gyrus. Nature. 2018;559:98–102. doi:10.1038/s41586-018-0262-4
  • Lieberwirth C, Pan Y, Liu Y, et al. Hippocampal adult neurogenesis: its regulation and potential role in spatial learning and memory. Brain Res. 2016;1644:127–40. doi:10.1016/j.brainres.2016.05.015
  • Leal G, Bramham CR, Duarte CB. BDNF and hippocampal synaptic plasticity. Vitam Horm. 2017;104:153–95. doi:10.1016/bs.vh.2016.10.004
  • Bath KG, Akins MR, Lee FS. BDNF control of adult SVZ neurogenesis. Dev Psychobiol. 2012;54:578–89. doi:10.1002/dev.20546
  • Bekinschtein P, Oomen CA, Saksida LM, et al. Effects of environmental enrichment and voluntary exercise on neurogenesis, learning and memory, and pattern separation: BDNF as a critical variable? Semin Cell Dev Biol. 2011;22:536–42. doi:10.1016/j.semcdb.2011.07.002
  • Kotlega D, Zembron-Lacny A, Morawin B, et al. Free fatty acids and their inflammatory derivatives affect BDNF in stroke patients. Mediators Inflamm. 2020;2020:6676247. doi:10.1155/2020/6676247
  • Wang L, Zhang Z, Wang Y, et al. Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke. 2004;35:1732–7. doi:10.1161/01.STR.0000132196.49028.a4
  • Kim YR, Kim HN, Ahn SM, et al. Electroacupuncture promotes post-stroke functional recovery via enhancing endogenous neurogenesis in mouse focal cerebral ischemia. PLoS One. 2014;9:e90000. doi:10.1371/journal.pone.0090000
  • Ni GX, Liang C, Wang J, et al. Astragaloside IV improves neurobehavior and promotes hippocampal neurogenesis in MCAO rats though BDNF-TrkB signaling pathway. Biomed Pharmacother. 2020;130:110353. doi:10.1016/j.biopha.2020.110353
  • Sun Q, Liu Q, Zhou X, et al. Flavonoids regulate tumor-associated macrophages - from structure-activity relationship to clinical potential (Review). Pharmacol Res. 2022;184:106419. doi:10.1016/j.phrs.2022.106419
  • Cichon N, Saluk-Bijak J, Gorniak L, et al. Flavonoids as a natural enhancer of neuroplasticity-an overview of the mechanism of neurorestorative action. Antioxidants (Basel). 2020;9.
  • Collaborators GBDS. Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021;20:795–820. doi:10.1016/S1474-4422(21)00252-0
  • Murphy SJ, Werring DJ. Stroke: causes and clinical features. Medicine (Abingdon). 2020;48:561–6.
  • Jung S, Wiest R, Gralla J, et al. Relevance of the cerebral collateral circulation in ischaemic stroke: time is brain, but collaterals set the pace. Swiss Med Wkly. 2017;147:w14538.
  • Kuriakose D, Xiao Z. Pathophysiology and treatment of stroke: present status and future perspectives. Int J Mol Sci. 2020;21. doi:10.3390/ijms21207609
  • Feske SK. Ischemic stroke. Am J Med. 2021;134:1457–64. doi:10.1016/j.amjmed.2021.07.027
  • Campbell BCV, Silva D, Macleod DA, R M, et al. Ischaemic stroke. Nat Rev Dis Primers. 2019;5:70. doi:10.1038/s41572-019-0118-8
  • Botelho A, Rios J, Fidalgo AP, et al. Organizational factors determining access to reperfusion therapies in ischemic stroke-systematic literature review. Int J Environ Res Public Health. 2022;19. doi:10.3390/ijerph192316357
  • Powers WJ, Rabinstein AA, Ackerson T, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 Update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2019;50:e344–e418. doi:10.1161/STROKEAHA.118.022606
  • Tao T, Liu M, Chen M, et al. Natural medicine in neuroprotection for ischemic stroke: challenges and prospective. Pharmacol Ther. 2020;216:107695. doi:10.1016/j.pharmthera.2020.107695
  • Azad TD, Veeravagu A, Steinberg GK. Neurorestoration after stroke. Neurosurg Focus. 2016;40:E2. doi:10.3171/2016.2.FOCUS15637
  • Koh SH, Park HH. Neurogenesis in stroke recovery. Transl Stroke Res. 2017;8:3–13. doi:10.1007/s12975-016-0460-z
  • Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol. 1965;124:319–35. doi:10.1002/cne.901240303
  • Spalding KL, Bergmann O, Alkass K, et al. Dynamics of hippocampal neurogenesis in adult humans. Cell. 2013;153:1219–27. doi:10.1016/j.cell.2013.05.002
  • Boldrini M, Fulmore CA, Tartt AN, et al. Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell. 2018;22:589–99 e585. doi:10.1016/j.stem.2018.03.015
  • Zhao C, Deng W, Gage FH. Mechanisms and functional implications of adult neurogenesis. Cell. 2008;132:645–60. doi:10.1016/j.cell.2008.01.033
  • Jorgensen C. Adult mammalian neurogenesis and motivated behaviors. Integr Zool. 2018;13:655–72. doi:10.1111/1749-4877.12335
  • Dranovsky A, Picchini AM, Moadel T, et al. Experience dictates stem cell fate in the adult hippocampus. Neuron. 2011;70:908–23. doi:10.1016/j.neuron.2011.05.022
  • Berg DA, Yoon K-J, Will B, et al. Tbr2-expressing intermediate progenitor cells in the adult mouse hippocampus are unipotent neuronal precursors with limited amplification capacity under homeostasis. Front Biol (Beijing). 2015;10:262–71. doi:10.1007/s11515-015-1364-0
  • Grochowski C, Radzikowska E, Maciejewski R. Neural stem cell therapy-brief review. Clin Neurol Neurosurg. 2018;173:8–14. doi:10.1016/j.clineuro.2018.07.013
  • Niklison-Chirou MV, Agostini M, Amelio I, et al. Regulation of adult neurogenesis in mammalian brain. Int J Mol Sci. 2020;21. doi:10.3390/ijms21144869
  • Yu TS, Washington PM, Kernie SG. Injury-induced neurogenesis: mechanisms and relevance. Neuroscientist. 2016;22:61–71. doi:10.1177/1073858414563616
  • Gu W, Brannstrom T, Wester P. Cortical neurogenesis in adult rats after reversible photothrombotic stroke. J Cereb Blood Flow Metab. 2000;20:1166–73. doi:10.1097/00004647-200008000-00002
  • Bellenchi GC, Volpicelli F, Piscopo V, et al. Adult neural stem cells: an endogenous tool to repair brain injury? J Neurochem. 2013;124:159–67. doi:10.1111/jnc.12084
  • Kuhn HG, Toda T, Gage FH. Adult hippocampal neurogenesis: a coming-of-age story. J Neurosci. 2018;38:10401–10. doi:10.1523/JNEUROSCI.2144-18.2018
  • Suh H, Deng W, Gage FH. Signaling in adult neurogenesis. Annu Rev Cell Dev Biol. 2009;25:253–75. doi:10.1146/annurev.cellbio.042308.113256
  • Moreno-Jimenez EP, Terreros-Roncal J, Flor-Garcia M, et al. Evidences for adult hippocampal neurogenesis in humans. J Neurosci. 2021;41:2541–53. doi:10.1523/JNEUROSCI.0675-20.2020
  • Bond AM, Ming GL, Song H. Adult mammalian neural stem cells and neurogenesis: five decades later. Cell Stem Cell. 2015;17:385–95. doi:10.1016/j.stem.2015.09.003
  • Tong CK, Alvarez-Buylla A. SnapShot: adult neurogenesis in the V-SVZ. Neuron. 2014;81:220– e221. doi:10.1016/j.neuron.2013.12.004
  • De Marchis S, Bovetti S, Carletti B, et al. Generation of distinct types of periglomerular olfactory bulb interneurons during development and in adult mice: implication for intrinsic properties of the subventricular zone progenitor population. J Neurosci. 2007;27:657–64. doi:10.1523/JNEUROSCI.2870-06.2007
  • Bagley JA, Belluscio L. Dynamic imaging reveals that brain-derived neurotrophic factor can independently regulate motility and direction of neuroblasts within the rostral migratory stream. Neuroscience. 2010;169:1449–61. doi:10.1016/j.neuroscience.2010.05.075
  • Bovetti S, Hsieh YC, Bovolin P, et al. Blood vessels form a scaffold for neuroblast migration in the adult olfactory bulb. J Neurosci. 2007;27:5976–80. doi:10.1523/JNEUROSCI.0678-07.2007
  • Whitman MC, Fan W, Rela L, et al. Blood vessels form a migratory scaffold in the rostral migratory stream. J Comp Neurol. 2009;516:94–104. doi:10.1002/cne.22093
  • Snapyan M, Lemasson M, Brill MS, et al. Vasculature guides migrating neuronal precursors in the adult mammalian forebrain via brain-derived neurotrophic factor signaling. J Neurosci. 2009;29:4172–88. doi:10.1523/JNEUROSCI.4956-08.2009
  • Zhao C, Teng EM, Summers RG, Jr, et al. Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci. 2006;26:3–11. doi:10.1523/JNEUROSCI.3648-05.2006
  • Toda T, Gage FH. Review: adult neurogenesis contributes to hippocampal plasticity. Cell Tissue Res. 2018;373:693–709. doi:10.1007/s00441-017-2735-4
  • Cameron HA, Woolley CS, McEwen BS, et al. Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience. 1993;56:337–44. doi:10.1016/0306-4522(93)90335-D
  • Karakatsani A, Alvarez-Vergara MI, Ruiz de Almodovar C. The vasculature of neurogenic niches: properties and function. Cells Dev. 2023;174:203841. doi:10.1016/j.cdev.2023.203841
  • Heberden C. Modulating adult neurogenesis through dietary interventions. Nutr Res Rev. 2016;29:163–71. doi:10.1017/S0954422416000081
  • Sairanen M, Lucas G, Ernfors P, et al. Brain-derived neurotrophic factor and antidepressant drugs have different but coordinated effects on neuronal turnover, proliferation, and survival in the adult dentate gyrus. J Neurosci. 2005;25:1089–94. doi:10.1523/JNEUROSCI.3741-04.2005
  • Han W, Jiang L, Song X, et al. VEGF modulates neurogenesis and microvascular remodeling in epileptogenesis after status epilepticus in immature rats. Front Neurol. 2021;12:808568. doi:10.3389/fneur.2021.808568
  • Leal-Galicia P, Chavez-Hernandez ME, Mata F, et al. Adult neurogenesis: a story ranging from controversial new neurogenic areas and human adult neurogenesis to molecular regulation. Int J Mol Sci. 2021;22. doi:10.3390/ijms222111489
  • Fletcher JL, Murray SS, Xiao J. Brain-derived neurotrophic factor in central nervous system myelination: a new mechanism to promote myelin plasticity and repair. Int J Mol Sci. 2018;19. doi:10.3390/ijms19124131
  • von Bohlen Und Halbach O, von Bohlen Und Halbach V. BDNF effects on dendritic spine morphology and hippocampal function. Cell Tissue Res. 2018;373:729–41. doi:10.1007/s00441-017-2782-x
  • Park H, Poo MM. Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci. 2013;14:7–23. doi:10.1038/nrn3379
  • Kaplan DR, Miller FD. Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol. 2000;10:381–91. doi:10.1016/S0959-4388(00)00092-1
  • Gorski JA, Zeiler SR, Tamowski S, et al. Brain-derived neurotrophic factor is required for the maintenance of cortical dendrites. J Neurosci. 2003;23:6856–65. doi:10.1523/JNEUROSCI.23-17-06856.2003
  • Kwon M, Fernandez JR, Zegarek GF, et al. BDNF-promoted increases in proximal dendrites occur via CREB-dependent transcriptional regulation of cypin. J Neurosci. 2011;31:9735–45. doi:10.1523/JNEUROSCI.6785-10.2011
  • Orefice LL, Waterhouse EG, Partridge JG, et al. Distinct roles for somatically and dendritically synthesized brain-derived neurotrophic factor in morphogenesis of dendritic spines. J Neurosci. 2013;33:11618–32. doi:10.1523/JNEUROSCI.0012-13.2013
  • Zagrebelsky M, Tacke C, Korte M. BDNF signaling during the lifetime of dendritic spines. Cell Tissue Res. 2020;382:185–99. doi:10.1007/s00441-020-03226-5
  • Almulla AYH, Mogulkoc R, Baltaci AK, et al. Learning, neurogenesis and effects of flavonoids on learning. Mini Rev Med Chem. 2022;22:355–64. doi:10.2174/1389557521666210707120719
  • Araki T, Ikegaya Y, Koyama R. The effects of microglia- and astrocyte-derived factors on neurogenesis in health and disease. Eur J Neurosci. 2021;54:5880–901. doi:10.1111/ejn.14969
  • Numakawa T, Odaka H, Adachi N. Actions of brain-derived neurotrophin factor in the neurogenesis and neuronal function, and its involvement in the pathophysiology of brain diseases. Int J Mol Sci. 2018;19. doi:10.3390/ijms19113650
  • Qian MD, Zhang J, Tan XY, et al. Novel agonist monoclonal antibodies activate TrkB receptors and demonstrate potent neurotrophic activities. J Neurosci. 2006;26:9394–403. doi:10.1523/JNEUROSCI.1118-06.2006
  • Lee J, Duan W, Mattson MP. Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. J Neurochem. 2002;82:1367–75. doi:10.1046/j.1471-4159.2002.01085.x
  • Pearson-Fuhrhop KM, Cramer SC. Genetic influences on neural plasticity. PM R. 2010;2:S227–240. doi:10.1016/j.pmrj.2010.09.011
  • Wang L, Chang X, She L, et al. Autocrine action of BDNF on dendrite development of adult-born hippocampal neurons. J Neurosci. 2015;35:8384–93. doi:10.1523/JNEUROSCI.4682-14.2015
  • Sonoyama T, Stadler LKJ, Zhu M, et al. Human BDNF/TrkB variants impair hippocampal synaptogenesis and associate with neurobehavioural abnormalities. Sci Rep. 2020;10:9028. doi:10.1038/s41598-020-65531-x
  • Quesseveur G, David DJ, Gaillard MC, et al. BDNF overexpression in mouse hippocampal astrocytes promotes local neurogenesis and elicits anxiolytic-like activities. Transl Psychiatry. 2013;3:e253. doi:10.1038/tp.2013.30
  • Vitaliano GD, Kim JK, Kaufman MJ, et al. Clathrin-nanoparticles deliver BDNF to hippocampus and enhance neurogenesis, synaptogenesis and cognition in HIV/neuroAIDS mouse model. Commun Biol. 2022;5:236. doi:10.1038/s42003-022-03177-3
  • Scharfman H, Goodman J, Macleod A, et al. Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Exp Neurol. 2005;192:348–56. doi:10.1016/j.expneurol.2004.11.016
  • Numakawa T, Odaka H, Adachi N. Actions of brain-derived neurotrophic factor and glucocorticoid stress in neurogenesis. Int J Mol Sci. 2017;18. doi:10.3390/ijms18112312
  • Ben-Zeev T, Shoenfeld Y, Hoffman JR. The effect of exercise on neurogenesis in the brain. Isr Med Assoc J. 2022;24:533–8.
  • Tharmaratnam T, Tabobondung T, Tabobondung T, et al. Synergistic effects of brain-derived neurotrophic factor (BDNF) and exercise intensity on memory in the adolescent brain: a commentary. Environ Health Prev Med. 2018;23:12. doi:10.1186/s12199-018-0701-8
  • Katoh-Semba R, Asano T, Ueda H, et al. Riluzole enhances expression of brain-derived neurotrophic factor with consequent proliferation of granule precursor cells in the rat hippocampus. FASEB J. 2002;16:1328–30. doi:10.1096/fj.02-0143fje
  • Jung HY, Kim W, Kwon HJ, et al. Physical stress induced reduction of proliferating cells and differentiated neuroblasts is ameliorated by fermented Laminaria japonica extract treatment. Mar Drugs. 2020;18.
  • Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients. 2010;2:1231–46. doi:10.3390/nu2121231
  • Fraga CG, Croft KD, Kennedy DO, et al. The effects of polyphenols and other bioactives on human health. Food Funct. 2019;10:514–28. doi:10.1039/C8FO01997E
  • Shen N, Wang T, Gan Q, et al. Plant flavonoids: classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022;383:132531. doi:10.1016/j.foodchem.2022.132531
  • Manach C, Scalbert A, Morand C, et al. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004;79:727–47. doi:10.1093/ajcn/79.5.727
  • Liu W, Feng Y, Yu S, et al. The flavonoid biosynthesis network in plants. Int J Mol Sci. 2021;22.
  • Toh JY, Tan VM, Lim PC, et al. Flavonoids from fruit and vegetables: a focus on cardiovascular risk factors. Curr Atheroscler Rep. 2013;15:368. doi:10.1007/s11883-013-0368-y
  • Amiot MJ, Riva C, Vinet A. Effects of dietary polyphenols on metabolic syndrome features in humans: a systematic review. Obes Rev. 2016;17:573–86. doi:10.1111/obr.12409
  • Kozlowska A, Szostak-Wegierek D. Flavonoids–food sources and health benefits. Rocz Panstw Zakl Hig. 2014;65:79–85.
  • Cheng N, Bell L, Lamport DJ, et al. Dietary flavonoids and human cognition: a meta-analysis. Mol Nutr Food Res. 2022;66:e2100976. doi:10.1002/mnfr.202100976
  • Parrella E, Gussago C, Porrini V, et al. From preclinical stroke models to humans: polyphenols in the prevention and treatment of stroke. Nutrients. 2020;13. doi:10.3390/nu13010085
  • Spencer JP, Vauzour D, Rendeiro C. Flavonoids and cognition: the molecular mechanisms underlying their behavioural effects. Arch Biochem Biophys. 2009;492:1–9. doi:10.1016/j.abb.2009.10.003
  • Ramezani M, Meymand AZ, Khodagholi F, et al. A role for flavonoids in the prevention and/or treatment of cognitive dysfunction, learning, and memory deficits: a review of preclinical and clinical studies. Nutr Neurosci. 2023;26:156–72. doi:10.1080/1028415X.2022.2028058
  • Xiao Z, Cao Z, Yang J, et al. Baicalin promotes hippocampal neurogenesis via the Wnt/beta-catenin pathway in a chronic unpredictable mild stress-induced mouse model of depression. Biochem Pharmacol. 2021;190:114594. doi:10.1016/j.bcp.2021.114594
  • Prajit R, Sritawan N, Suwannakot K, et al. Chrysin protects against memory and hippocampal neurogenesis depletion in D-galactose-induced aging in rats. Nutrients. 2020;12. doi:10.3390/nu12041100
  • Stagni F, Giacomini A, Guidi S, et al. A flavonoid agonist of the TrkB receptor for BDNF improves hippocampal neurogenesis and hippocampus-dependent memory in the Ts65Dn mouse model of DS. Exp Neurol. 2017;298:79–96. doi:10.1016/j.expneurol.2017.08.018
  • Lee Y, Jeon SJ, Lee HE, et al. Spinosin, a C-glycoside flavonoid, enhances cognitive performance and adult hippocampal neurogenesis in mice. Pharmacol Biochem Behav. 2016;145:9–16. doi:10.1016/j.pbb.2016.03.007
  • Wang Y, Li M, Xu X, et al. Green tea epigallocatechin-3-gallate (EGCG) promotes neural progenitor cell proliferation and sonic hedgehog pathway activation during adult hippocampal neurogenesis. Mol Nutr Food Res. 2012;56:1292–303. doi:10.1002/mnfr.201200035
  • Ortiz-Lopez L, Marquez-Valadez B, Gomez-Sanchez A, et al. Green tea compound epigallo-catechin-3-gallate (EGCG) increases neuronal survival in adult hippocampal neurogenesis in vivo and in vitro. Neuroscience. 2016;322:208–20. doi:10.1016/j.neuroscience.2016.02.040
  • Shengkai D, Qianqian L, Yazhen S. The effects and regulatory mechanism of flavonoids from stems and leaves of Scutellaria baicalensis Georgi in promoting neurogenesis and improving memory impairment mediated by the BDNF-ERK-CREB signaling pathway in rats. CNS Neurol Disord Drug Targets. 2022;21:354–66. doi:10.2174/1871527320666210827112048
  • Lee D, Kim N, Jeon SH, et al. Hesperidin improves memory function by enhancing neurogenesis in a mouse model of Alzheimer's disease. Nutrients. 2022;14.
  • Gao C, Wu M, Du Q, et al. Naringin mediates adult hippocampal neurogenesis for antidepression via activating CREB signaling. Front Cell Dev Biol. 2022;10:731831. doi:10.3389/fcell.2022.731831
  • Sawamoto A, Okuyama S, Yamamoto K, et al. 3,5,6,7,8,3’,4'-Heptamethoxyflavone, a citrus flavonoid, ameliorates corticosterone-induced depression-like behavior and restores brain-derived neurotrophic factor expression, neurogenesis, and neuroplasticity in the hippocampus. Molecules. 2016;21:541. doi:10.3390/molecules21040541
  • Jin K, Minami M, Lan JQ, et al. Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci U S A. 2001;98:4710–5. doi:10.1073/pnas.081011098
  • Tonchev AB, Yamashima T, Zhao L, et al. Proliferation of neural and neuronal progenitors after global brain ischemia in young adult macaque monkeys. Mol Cell Neurosci. 2003;23:292–301. doi:10.1016/S1044-7431(03)00058-7
  • Kawai T, Takagi N, Miyake-Takagi K, et al. Characterization of BrdU-positive neurons induced by transient global ischemia in adult hippocampus. J Cereb Blood Flow Metab. 2004;24:548–55. doi:10.1097/00004647-200405000-00009
  • Nakatomi H, Kuriu T, Okabe S, et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell. 2002;110:429–41. doi:10.1016/S0092-8674(02)00862-0
  • Choi YS, Lee MY, Sung KW, et al. Regional differences in enhanced neurogenesis in the dentate gyrus of adult rats after transient forebrain ischemia. Mol Cells. 2003;16:232–8.
  • Liu J, Solway K, Messing RO, et al. Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. J Neurosci. 1998;18:7768–78. doi:10.1523/JNEUROSCI.18-19-07768.1998
  • Takagi Y, Nozaki K, Takahashi J, et al. Proliferation of neuronal precursor cells in the dentate gyrus is accelerated after transient forebrain ischemia in mice. Brain Res. 1999;831:283–7. doi:10.1016/S0006-8993(99)01411-0
  • Salazar-Colocho P, Lanciego JL, Del Rio J, et al. Ischemia induces cell proliferation and neurogenesis in the gerbil hippocampus in response to neuronal death. Neurosci Res. 2008;61:27–37. doi:10.1016/j.neures.2008.01.008
  • Dayer AG, Ford AA, Cleaver KM, et al. Short-term and long-term survival of new neurons in the rat dentate gyrus. J Comp Neurol. 2003;460:563–72. doi:10.1002/cne.10675
  • Pforte C, Henrich-Noack P, Baldauf K, et al. Increase in proliferation and gliogenesis but decrease of early neurogenesis in the rat forebrain shortly after transient global ischemia. Neuroscience. 2005;136:1133–46. doi:10.1016/j.neuroscience.2005.08.043
  • Jin K, Sun Y, Xie L, et al. Directed migration of neuronal precursors into the ischemic cerebral cortex and striatum. Mol Cell Neurosci. 2003;24:171–89. doi:10.1016/S1044-7431(03)00159-3
  • Ohab JJ, Fleming S, Blesch A, et al. A neurovascular niche for neurogenesis after stroke. J Neurosci. 2006;26:13007–16. doi:10.1523/JNEUROSCI.4323-06.2006
  • Yamashita T, Ninomiya M, Hernandez Acosta P, et al. Subventricular zone-derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum. J Neurosci. 2006;26:6627–36. doi:10.1523/JNEUROSCI.0149-06.2006
  • Andsberg G, Kokaia Z, Klein RL, et al. Neuropathological and behavioral consequences of adeno-associated viral vector-mediated continuous intrastriatal neurotrophin delivery in a focal ischemia model in rats. Neurobiol Dis. 2002;9:187–204. doi:10.1006/nbdi.2001.0456
  • Arvidsson A, Collin T, Kirik D, et al. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med. 2002;8:963–70. doi:10.1038/nm747
  • Zhang RL, LeTourneau Y, Gregg SR, et al. Neuroblast division during migration toward the ischemic striatum: a study of dynamic migratory and proliferative characteristics of neuroblasts from the subventricular zone. J Neurosci. 2007;27:3157–62. doi:10.1523/JNEUROSCI.4969-06.2007
  • Parent JM, Vexler ZS, Gong C, et al. Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann Neurol. 2002;52:802–13. doi:10.1002/ana.10393
  • Thored P, Arvidsson A, Cacci E, et al. Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells. 2006;24:739–47. doi:10.1634/stemcells.2005-0281
  • Thored P, Wood J, Arvidsson A, et al. Long-term neuroblast migration along blood vessels in an area with transient angiogenesis and increased vascularization after stroke. Stroke. 2007;38:3032–9. doi:10.1161/STROKEAHA.107.488445
  • Hou SW, Wang YQ, Xu M, et al. Functional integration of newly generated neurons into striatum after cerebral ischemia in the adult rat brain. Stroke. 2008;39:2837–44. doi:10.1161/STROKEAHA.107.510982
  • Cui L, Qu H, Xiao T, et al. Stromal cell-derived factor-1 and its receptor CXCR4 in adult neurogenesis after cerebral ischemia. Restor Neurol Neurosci. 2013;31:239–51.
  • Imitola J, Raddassi K, Park KI, et al. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A. 2004;101:18117–22. doi:10.1073/pnas.0408258102
  • Teramoto T, Qiu J, Plumier JC, et al. EGF amplifies the replacement of parvalbumin-expressing striatal interneurons after ischemia. J Clin Invest. 2003;111:1125–32. doi:10.1172/JCI200317170
  • Jin K, Wang X, Xie L, et al. Evidence for stroke-induced neurogenesis in the human brain. Proc Natl Acad Sci U S A. 2006;103:13198–202. doi:10.1073/pnas.0603512103
  • Ruan L, Wang B, ZhuGe Q, et al. Coupling of neurogenesis and angiogenesis after ischemic stroke. Brain Res. 2015;1623:166–73. doi:10.1016/j.brainres.2015.02.042
  • Wang Y, Mao JK, O X, et al. VEGF-overexpressing transgenic mice show enhanced post-ischemic neurogenesis and neuromigration. J Neurosci Res. 2007;85:740–7. doi:10.1002/jnr.21169
  • Chen J, Zacharek A, Zhang C, et al. Endothelial nitric oxide synthase regulates brain-derived neurotrophic factor expression and neurogenesis after stroke in mice. J Neurosci. 2005;25:2366–75. doi:10.1523/JNEUROSCI.5071-04.2005
  • Liang H, Zhao H, Gleichman A, et al. Region-specific and activity-dependent regulation of SVZ neurogenesis and recovery after stroke. Proc Natl Acad Sci U S A. 2019;116:13621–30. doi:10.1073/pnas.1811825116
  • Feng B, Jia S, Li L, et al. TAT-LBD-Ngn2-improved cognitive functions after global cerebral ischemia by enhancing neurogenesis. Brain Behav. 2023;13:e2847. doi:10.1002/brb3.2847
  • Jin K, Wang X, Xie L, et al. Transgenic ablation of doublecortin-expressing cells suppresses adult neurogenesis and worsens stroke outcome in mice. Proc Natl Acad Sci U S A. 2010;107:7993–8. doi:10.1073/pnas.1000154107
  • Karantali E, Kazis D, Papavasileiou V, et al. Serum BDNF levels in acute stroke: A systematic review and meta-analysis. Medicina (Kaunas). 2021;57.
  • Mojtabavi H, Shaka Z, Momtazmanesh S, et al. Circulating brain-derived neurotrophic factor as a potential biomarker in stroke: a systematic review and meta-analysis. J Transl Med. 2022;20:126. doi:10.1186/s12967-022-03312-y
  • Lasek-Bal A, Jedrzejowska-Szypulka H, Rozycka J, et al. Low Concentration of BDNF in the acute phase of ischemic stroke as a factor in poor prognosis in terms of functional status of patients. Med Sci Monit. 2015;21:3900–5. doi:10.12659/MSM.895358
  • Liu W, Wang X, O'Connor M, et al. Brain-derived neurotrophic factor and its potential therapeutic role in stroke comorbidities. Neural Plast. 2020;2020:1969482.
  • Zhu ZH, Jia F, Ahmed W, et al. Neural stem cell-derived exosome as a nano-sized carrier for BDNF delivery to a rat model of ischemic stroke. Neural Regen Res. 2023;18:404–9. doi:10.4103/1673-5374.346466
  • Schabitz WR, Sommer C, Zoder W, et al. Intravenous brain-derived neurotrophic factor reduces infarct size and counterregulates Bax and Bcl-2 expression after temporary focal cerebral ischemia. Stroke. 2000;31:2212–7. doi:10.1161/01.STR.31.9.2212
  • Luo J, Zheng H, Zhang L, et al. High-frequency repetitive transcranial magnetic stimulation (rTMS) improves functional recovery by enhancing neurogenesis and activating BDNF/TrkB signaling in ischemic rats. Int J Mol Sci. 2017;18.
  • Schabitz WR, Steigleder T, Cooper-Kuhn CM, et al. Intravenous brain-derived neurotrophic factor enhances poststroke sensorimotor recovery and stimulates neurogenesis. Stroke. 2007;38:2165–72. doi:10.1161/STROKEAHA.106.477331
  • Bagheri A, Talei S, Hassanzadeh N, et al. The neuroprotective effects of flaxseed oil supplementation on functional motor recovery in a model of ischemic brain stroke: upregulation of BDNF and GDNF. Acta Med Iran. 2017;55:785–92.
  • Tan XD, Liu B, Jiang Y, et al. Gadd45b mediates environmental enrichment-induced neurogenesis in the SVZ of rats following ischemia stroke via BDNF. Neurosci Lett. 2021;745:135616. doi:10.1016/j.neulet.2020.135616
  • Jiang C, Zuo F, Wang Y, et al. Progesterone changes VEGF and BDNF expression and promotes neurogenesis after ischemic stroke. Mol Neurobiol. 2016.
  • Fanaei H, Karimian SM, Sadeghipour HR, et al. Testosterone enhances functional recovery after stroke through promotion of antioxidant defenses, BDNF levels and neurogenesis in male rats. Brain Res. 2014;1558:74–83. doi:10.1016/j.brainres.2014.02.028
  • Caliskan M, Mogulkoc R, Baltaci AK, et al. The effect of 3’,4'-dihydroxyflavonol on lipid peroxidation in rats with cerebral ischemia reperfusion injury. Neurochem Res. 2016;41:1732–40. doi:10.1007/s11064-016-1889-x
  • Zhuang PW, Cui GZ, Zhang YJ, et al. Baicalin regulates neuronal fate decision in neural stem/progenitor cells and stimulates hippocampal neurogenesis in adult rats. CNS Neurosci Ther. 2013;19:154–62. doi:10.1111/cns.12050
  • Okuyama S, Morita M, Miyoshi K, et al. 3,5,6,7,8,3’,4'-Heptamethoxyflavone, a citrus flavonoid, on protection against memory impairment and neuronal cell death in a global cerebral ischemia mouse model. Neurochem Int. 2014;70:30–8. doi:10.1016/j.neuint.2014.03.008
  • Okuyama S, Shimada N, Kaji M, et al. Heptamethoxyflavone, a citrus flavonoid, enhances brain-derived neurotrophic factor production and neurogenesis in the hippocampus following cerebral global ischemia in mice. Neurosci Lett. 2012;528:190–5. doi:10.1016/j.neulet.2012.08.079
  • Zhang JC, Xu H, Yuan Y, et al. Delayed treatment with green tea polyphenol EGCG promotes neurogenesis after ischemic stroke in adult mice. Mol Neurobiol. 2017;54:3652–64. doi:10.1007/s12035-016-9924-0
  • Gao H, Huang N, Wang W et al. (2022) Astragalus flavone induces proliferation and differentiation of neural stem cells in a cerebral infarction model. Med Sci Monit 28, e933830.
  • Li R, Li X, Wu H, et al. Theaflavin attenuates cerebral ischemia/reperfusion injury by abolishing miRNA–128–3p–mediated Nrf2 inhibition and reducing oxidative stress. Mol Med Rep. 2019;20:4893–904.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.