Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Latest Articles
5,826
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Potential of dietary polyphenols for protection from age-related decline and neurodegeneration: a role for gut microbiota?

, , , , , , , , , & show all

References

  • United Nations. Department of economic and social affairs, population division (2013). World Population Ageing; 2013.
  • Emmady PD, Tadi P. Dementia. In StatPearls; StatPearls Publishing: Treasure Island (FL); 2022.
  • Kanner J. Dietary advanced lipid oxidation endproducts are risk factors to human health. Mol Nutr Food Res. 2007;51(9):1094–101. doi:10.1002/mnfr.200600303.
  • Kastorini C-M, Milionis HJ, Esposito K, Giugliano D, Goudevenos JA, Panagiotakos DB. The effect of Mediterranean diet on metabolic syndrome and its components. J Am Coll Cardiol. 2011;57(11):1299–313. doi:10.1016/j.jacc.2010.09.073.
  • Khalili H, Håkansson N, Chan SS, Chen Y, Lochhead P, Ludvigsson JF, et al. Adherence to a Mediterranean diet Is associated with a lower risk of later-onset Crohn’s disease: results from two large prospective cohort studies. Gut. 2020;69(9):1637–44. doi:10.1136/gutjnl-2019-319505.
  • Kim H, Caulfield LE, Garcia-Larsen V, Steffen LM, Coresh J, Rebholz CM. Plant-based diets Are associated With a lower risk of incident cardiovascular disease, cardiovascular disease mortality, and all-cause mortality in a general population of middle-aged adults. J Am Heart Assoc. 2019;8(16). doi:10.1161/JAHA.119.012865.
  • Kojima G, Avgerinou C, Iliffe S, Walters K. Adherence to Mediterranean diet reduces incident frailty risk: systematic review and meta-analysis. J Am Geriatr Soc. 2018;66(4):783–8. doi:10.1111/jgs.15251.
  • Willett W, Sacks F, Trichopoulou A, Drescher G, Ferro-Luzzi A, Helsing E, Trichopoulos D. Mediterranean diet pyramid: a cultural model for healthy eating. Am J Clin Nutr. 1995;61(6):1402S–6S. doi:10.1093/ajcn/61.6.1402S.
  • Scarmeas N, Anastasiou CA, Yannakoulia M. Nutrition and prevention of cognitive impairment. Lancet Neurol. 2018;17(11):1006–15. doi:10.1016/S1474-4422(18)30338-7.
  • Valls-Pedret C, Sala-Vila A, Serra-Mir M, Corella D, de la Torre R, Martínez-González MÁ, et al. Mediterranean diet and age-related cognitive decline. JAMA Intern Med. 2015;175(7):1094. doi:10.1001/jamainternmed.2015.1668.
  • Coelho-Júnior HJ, Trichopoulou A, Panza F. Cross-sectional and longitudinal associations between adherence to Mediterranean diet with physical performance and cognitive function in older adults: a systematic review and meta-analysis. Ageing Res Rev. 2021;70:101395. doi:10.1016/j.arr.2021.101395.
  • Gu Y, Brickman AM, Stern Y, Habeck CG, Razlighi QR, Luchsinger JA, et al. Mediterranean diet and brain structure in a multiethnic elderly cohort. Neurology. 2015;85(20):1744–51. doi:10.1212/WNL.0000000000002121.
  • Horn J, Mayer DE, Chen S, Mayer EA. Role of diet and its effects on the Gut microbiome in the pathophysiology of mental disorders. Transl Psychiatry. 2022;12(1):164. doi:10.1038/s41398-022-01922-0.
  • Lourida I, Soni M, Thompson-Coon J, Purandare N, Lang IA, Ukoumunne OC, Llewellyn DJ. Mediterranean diet, cognitive function, and dementia. Epidemiology. 2013;24(4):479–89. doi:10.1097/EDE.0b013e3182944410.
  • Sofi F, Macchi C, Abbate R, Gensini GF, Casini A. Mediterranean diet and health status: an updated meta-analysis and a proposal for a literature-based adherence score. Public Health Nutr. 2014;17(12):2769–82. doi:10.1017/S1368980013003169.
  • Valls-Pedret C, Lamuela-Raventós RM, Medina-Remón A, Quintana M, Corella D, Pintó X, et al. Polyphenol-Rich foods in the Mediterranean diet are associated with better cognitive function in elderly subjects at high cardiovascular risk. J Alzheimer’s Dis. 2012;29(4):773–82. doi:10.3233/JAD-2012-111799.
  • Morris MC, Tangney CC, Wang Y, Sacks FM, Barnes LL, Bennett DA, Aggarwal NT. Mind diet slows cognitive decline with aging. Alzheimer’s Dementia. 2015;11(9):1015–22. doi:10.1016/j.jalz.2015.04.011.
  • Cherian L, Wang Y, Holland T, Agarwal P, Aggarwal N, Morris MC. Dash and Mediterranean-dash intervention for neurodegenerative delay (MIND) diets Are associated With fewer depressive symptoms over time. The J Gerontology: Ser A. 2021;76(1):151–6. doi:10.1093/gerona/glaa044.
  • Melo van Lent D, O’Donnell A, Beiser AS, Vasan RS, DeCarli CS, Scarmeas N, et al. Mind diet adherence and cognitive performance in the framingham heart study. J Alzheimer’s Dis. 2021;82(2):827–39. doi:10.3233/JAD-201238.
  • Morris MC, Tangney CC, Wang Y, Sacks FM, Bennett DA, Aggarwal NT. Mind diet associated with reduced incidence of Alzheimer’s disease. Alzheimer’s Dementia. 2015;11(9):1007–14. doi:10.1016/j.jalz.2014.11.009.
  • Gardener H. Mediterranean diet and white matter hyperintensity volume in the Northern Manhattan study. Arch Neurol. 2012;69(2):251. doi:10.1001/archneurol.2011.548.
  • Luciano M, Corley J, Cox SR, Valdés Hernández MC, Craig LCA, Dickie DA, et al. Mediterranean-Type diet and brain structural change from 73 to 76 years in a Scottish Cohort. Neurology. 2017;88(5):449–55. doi:10.1212/WNL.0000000000003559.
  • Scarmeas N, Luchsinger JA, Stern Y, Gu Y, He J, DeCarli C, et al. Mediterranean diet and magnetic resonance imaging–assessed cerebrovascular disease. Ann Neurol. 2011;69(2):257–68. doi:10.1002/ana.22317.
  • MillerIII E, Erlinger T, Sacks F, Svetkey L, Charleston J, Lin P, et al. A dietary pattern that lowers oxidative stress increases antibodies to oxidized LDL: results from a randomized controlled feeding study. Atherosclerosis. 2005;183(1):175–82. doi:10.1016/j.atherosclerosis.2005.04.001.
  • Smith PJ, Blumenthal JA, Babyak MA, Craighead L, Welsh-Bohmer KA, Browndyke JN, et al. Effects of the dietary approaches to stop hypertension diet, exercise, and caloric restriction on Neurocognition in overweight adults With high blood pressure. Hypertension. 2010;55(6):1331–8. doi:10.1161/HYPERTENSIONAHA.109.146795.
  • Tangney CC, Li H, Wang Y, Barnes L, Schneider JA, Bennett DA, Morris MC. Relation of DASH- and Mediterranean-like dietary patterns to cognitive decline in older persons. Neurology. 2014;83(16):1410–6. doi:10.1212/WNL.0000000000000884.
  • Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM, et al. A clinical trial of the effects of dietary patterns on blood pressure. N Engl J Med. 1997;336(16):1117–24. doi:10.1056/NEJM199704173361601.
  • Azadbakht L, Surkan PJ, Esmaillzadeh A, Willett WC. The dietary approaches to stop hypertension eating plan affects C-reactive protein, coagulation abnormalities, and hepatic function tests among Type 2 diabetic patients. J Nutr. 2011;141(6):1083–8. doi:10.3945/jn.110.136739.
  • Blumenthal JA, Babyak MA, Sherwood A, Craighead L, Lin P-H, Johnson J, et al. Effects of the dietary approaches to stop hypertension diet alone and in combination With exercise and caloric restriction on insulin sensitivity and lipids. Hypertension. 2010;55(5):1199–205. doi:10.1161/HYPERTENSIONAHA.109.149153.
  • Gadgil MD, Appel LJ, Yeung E, Anderson CAM, Sacks FM, Miller ER. The effects of carbohydrate, unsaturated Fat, and protein intake on measures of insulin sensitivity. Diabetes Care. 2013;36(5):1132–7. doi:10.2337/dc12-0869.
  • Martínez-Lapiscina EH, Clavero P, Toledo E, Estruch R, Salas-Salvadó J, San Julián B, et al. Mediterranean diet improves cognition: the PREDIMED-NAVARRA randomised trial. J Neurol Neurosurg Psychiatry. 2013;84(12):1318–25. doi:10.1136/jnnp-2012-304792.
  • Devore EE, Kang JH, Breteler MMB, Grodstein F. Dietary intakes of berries and flavonoids in relation to cognitive decline. Ann Neurol. 2012;72(1):135–43. doi:10.1002/ana.23594.
  • Gao X, Cassidy A, Schwarzschild MA, Rimm EB, Ascherio A. Habitual intake of dietary flavonoids and risk of Parkinson disease. Neurology. 2012;78(15):1138–45. doi:10.1212/WNL.0b013e31824f7fc4.
  • Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev. 2009;2(5):270–8. doi:10.4161/oxim.2.5.9498.
  • Beckman CH. Phenolic-Storing cells: keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants? Physiol Mol Plant Pathol. 2000;57(3):101–10. doi:10.1006/pmpp.2000.0287.
  • Cory H, Passarelli S, Szeto J, Tamez M, Mattei J. The role of polyphenols in human health and food systems: a mini-review. Front Nutr. 2018: 5. doi:10.3389/fnut.2018.00087.
  • Mena P, Calani L, Bruni R, Del Rio D. Bioactivation of high-molecular-weight polyphenols by the Gut microbiome. In: Diet-Microbe interactions in the Gut. Elsevier; 2015. p. 73–101. doi:10.1016/B978-0-12-407825-3.00006-X.
  • Polia F, Pastor-Belda M, Martínez-Blázquez A, Horcajada M-N, Tomás-Barberán FA, García-Villalba R. Technological and biotechnological processes To enhance the bioavailability of dietary (Poly)Phenols in humans. J Agric Food Chem. 2022;70(7):2092–107. doi:10.1021/acs.jafc.1c07198.
  • Neveu V, Perez-Jimenez J, Vos F, Crespy V, du Chaffaut L, Mennen L, et al. Phenol-explorer: an online comprehensive database on polyphenol contents in foods. Database. 2010;2010:bap024–bap024. doi:10.1093/database/bap024.
  • Szajdek A, Borowska EJ. Bioactive compounds and health-promoting properties of berry fruits: a review. Plant Foods Hum Nutr. 2008;63(4):147–56. doi:10.1007/s11130-008-0097-5.
  • Gonçalves AC, Nunes AR, Falcão A, Alves G, Silva LR. Dietary effects of anthocyanins in human health: a comprehensive review. Pharmaceuticals. 2021;14(7):690. doi:10.3390/ph14070690.
  • Foito A, McDougall GJ, Stewart D. Evidence for health benefits of berries. In: Annual plant reviews online. Wiley; 2018. p. 105–48. doi:10.1002/9781119312994.apr0600.
  • de Ferrars RM, Czank C, Zhang Q, Botting NP, Kroon PA, Cassidy A, Kay CD. The pharmacokinetics of anthocyanins and their metabolites in humans. Br J Pharmacol. 2014;171(13):3268–82. doi:10.1111/bph.12676.
  • Mena P, Bresciani L, Brindani N, Ludwig IA, Pereira-Caro G, Angelino D, et al. Phenyl-γ-Valerolactones and phenylvaleric acids, the main colonic metabolites of flavan-3-Ols: synthesis, analysis, bioavailability, and bioactivity. Nat Prod Rep. 2019;36(5):714–52. doi:10.1039/C8NP00062J.
  • Williamson G, Clifford MN. Colonic metabolites of berry polyphenols: The missing link to biological activity? Br J Nutr. 2010;104(S3):S48–66. doi:10.1017/S0007114510003946.
  • Istas G, Wood E, Le Sayec M, Rawlings C, Yoon J, Dandavate V, et al. Effects of Aronia Berry (Poly)Phenols on vascular function and Gut Microbiota: a double-blind randomized controlled trial in adult Men. Am J Clin Nutr. 2019;110(2):316–29. doi:10.1093/ajcn/nqz075.
  • Vendrame S, Guglielmetti S, Riso P, Arioli S, Klimis-Zacas D, Porrini M. Six-week consumption of a wild blueberry powder drink increases Bifidobacteria in the human Gut. J Agric Food Chem. 2011;59(24):12815–20. doi:10.1021/jf2028686.
  • Cryan JF, O’Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, et al. The microbiota-Gut-Brain Axis. Physiol Rev. 2019;99(4):1877–2013. doi:10.1152/physrev.00018.2018.
  • Needham BD, Kaddurah-Daouk R, Mazmanian SK. Gut microbial molecules in behavioural and neurodegenerative conditions. Nat Rev Neurosci. 2020;21(12):717–31. doi:10.1038/s41583-020-00381-0.
  • Mayer EA, Nance K, Chen S. The Gut–brain axis. Annu Rev Med. 2022;73(1):439–53. doi:10.1146/annurev-med-042320-014032.
  • Forrest CM, Khalil OS, Pisar M, Darlington LG, Stone TW. Prenatal inhibition of the Tryptophan–Kynurenine pathway alters synaptic plasticity and protein expression in the Rat hippocampus. Brain Res. 2013;1504:1–15. doi:10.1016/j.brainres.2013.01.031.
  • Savitz J. The kynurenine pathway: a finger in every Pie. Mol Psychiatry. 2020;25(1):131–47. doi:10.1038/s41380-019-0414-4.
  • Esteban-Fernández A, Rendeiro C, Spencer JPE, del Coso DG, de Llano MDG, Bartolomé B, et al. Neuroprotective effects of selected microbial-derived phenolic metabolites and aroma compounds from wine in human SH-SY5Y neuroblastoma cells and their putative mechanisms of action. Front Nutr. 2017: 4. doi:10.3389/fnut.2017.00003.
  • Figueira I, Garcia G, Pimpão RC, Terrasso AP, Costa I, Almeida AF, et al. Polyphenols journey through blood-brain barrier towards neuronal protection. Sci Rep. 2017;7(1):11456. doi:10.1038/s41598-017-11512-6.
  • Ruotolo R, Minato I, La Vitola P, Artioli L, Curti C, Franceschi V, et al. Flavonoid-derived human Phenyl-γ-Valerolactone metabolites selectively detoxify amyloid-β oligomers and prevent memory impairment in a mouse model of Alzheimer’s disease. Mol Nutr Food Res. 2020;64(5). doi:10.1002/mnfr.201900890.
  • Wang J, Hodes GE, Zhang H, Zhang S, Zhao W, Golden SA, et al. Epigenetic modulation of inflammation and synaptic plasticity promotes resilience against stress in mice. Nat Commun. 2018;9(1):477. doi:10.1038/s41467-017-02794-5.
  • Westfall S, Caracci F, Zhao D, Wu Q, Frolinger T, Simon J, et al. Microbiota metabolites modulate the T helper 17 to regulatory T cell (Th17/Treg) imbalance promoting resilience to stress-induced anxiety- and depressive-like behaviors. Brain Behav Immun. 2021;91:350–68. doi:10.1016/j.bbi.2020.10.013.
  • Yamasaki TR, Ono K, Ho L, Pasinetti GM. Gut microbiome-modified polyphenolic compounds inhibit α-synuclein seeding and spreading in α-synucleinopathies. Front Neurosci. 2020: 14. doi:10.3389/fnins.2020.00398.
  • Ottaviani JI, Heiss C, Spencer JPE, Kelm M, Schroeter H. Recommending flavanols and procyanidins for cardiovascular health: revisited. Mol Aspects Med. 2018;61:63–75. doi:10.1016/j.mam.2018.02.001.
  • Ottaviani JI, Borges G, Momma TY, Spencer JPE, Keen CL, Crozier A, et al. The metabolome of [2-14C](−)-epicatechin in humans: implications for the assessment of efficacy, safety and mechanisms of action of polyphenolic bioactives. Sci Rep. 2016;6(1):29034. doi:10.1038/srep29034.
  • Sloan RP, Wall M, Yeung L-K, Feng T, Feng X, Provenzano F, et al. Insights into the role of diet and dietary flavanols in cognitive aging: results of a randomized controlled trial. Sci Rep. 2021;11(1):3837. doi:10.1038/s41598-021-83370-2.
  • Steven S, Frenis K, Oelze M, Kalinovic S, Kuntic M, Bayo Jimenez MT, et al. Vascular inflammation and oxidative stress: major triggers for cardiovascular disease. Oxid Med Cell Longev. 2019;2019:1–26. doi:10.1155/2019/7092151.
  • Cyr AR, Huckaby LV, Shiva SS, Zuckerbraun BS. Nitric oxide and endothelial dysfunction. Crit Care Clin. 2020;36(2):307–21. doi:10.1016/j.ccc.2019.12.009.
  • Iwasaki-Kurashige K, Loyaga-Rendon RY, Matsumoto H, Tokunaga T, Azuma H. Possible mediators involved in decreasing peripheral vascular resistance with blackcurrant concentrate (BC) in hind-limb perfusion model of the Rat. Vascul Pharmacol. 2006;44(4):215–23. doi:10.1016/j.vph.2005.12.001.
  • Zhu Y, Xia M, Yang Y, Liu F, Li Z, Hao Y, et al. Purified anthocyanin supplementation improves endothelial function via NO-CGMP activation in hypercholesterolemic individuals. Clin Chem. 2011;57(11):1524–33. doi:10.1373/clinchem.2011.167361.
  • Mozos I, Flangea C, Vlad DC, Gug C, Mozos C, Stoian D, et al. Effects of anthocyanins on vascular health. Biomolecules. 2021;11(6):811. doi:10.3390/biom11060811.
  • Al-Numair KS, Chandramohan G, Veeramani C, Alsaif MA. Ameliorative effect of Kaempferol, a flavonoid, on oxidative stress in Streptozotocin-induced diabetic rats. Redox Rep. 2015;20(5):198–209. doi:10.1179/1351000214Y.0000000117.
  • Al-Numair KS, Veeramani C, Alsaif MA, Chandramohan G. Influence of Kaempferol, a flavonoid compound, on membrane-bound ATPases in Streptozotocin-induced diabetic rats. Pharm Biol. 2015;53(9):1372–8. doi:10.3109/13880209.2014.982301.
  • Mahobiya A, Singh TU, Rungsung S, Kumar T, Chandrasekaran G, Parida S, Kumar D. Kaempferol-Induces Vasorelaxation via endothelium-independent pathways in Rat isolated pulmonary artery. Pharmacol Rep. 2018;70(5):863–74. doi:10.1016/j.pharep.2018.03.006.
  • Heiss C, Jahn S, Taylor M, Real WM, Angeli FS, Wong ML, et al. Improvement of endothelial function with dietary flavanols is associated With mobilization of circulating Angiogenic cells in patients with coronary artery disease. J Am Coll Cardiol. 2010;56(3):218–24. doi:10.1016/j.jacc.2010.03.039.
  • Heiss C, Sansone R, Karimi H, Krabbe M, Schuler D, Rodriguez-Mateos A, et al. Impact of Cocoa Flavanol intake on Age-dependent vascular stiffness in healthy men: a randomized, controlled, double-masked trial. Age (Omaha). 2015;37(3):56. doi:10.1007/s11357-015-9794-9.
  • Silva H, Lopes NMF. Cardiovascular effects of Caffeic Acid and its derivatives: a comprehensive review. Front Physiol. 2020: 11. doi:10.3389/fphys.2020.595516.
  • Al-Khayri JM, Sahana GR, Nagella P, Joseph BV, Alessa FM, Al-Mssallem MQ. Flavonoids as potential anti-inflammatory molecules. A review. Molecules. 2022;27(9):2901. doi:10.3390/molecules27092901.
  • Chen Q, Wang B, Wang S, Qian X, Li X, Zhao J, et al. Modulation of the Gut microbiota structure with probiotics and Isoflavone alleviates metabolic disorder in ovariectomized mice. Nutrients. 2021;13(6):1793. doi:10.3390/nu13061793.
  • Li J, Chen C, Yang H, Yang X. Tea polyphenols regulate Gut microbiota dysbiosis induced by antibiotic in Mice. Food Res Int. 2021;141:110153. doi:10.1016/j.foodres.2021.110153.
  • Liu X, Martin DA, Valdez JC, Sudakaran S, Rey F, Bolling BW. Aronia Berry polyphenols have matrix-dependent effects on the Gut microbiota. Food Chem. 2021;359:129831. doi:10.1016/j.foodchem.2021.129831.
  • Anhê FF, Roy D, Pilon G, Dudonné S, Matamoros S, Varin TV, et al. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased akkermansia Spp. population in the Gut microbiota of mice. Gut. 2015;64(6):872–83. doi:10.1136/gutjnl-2014-307142.
  • Pan P, Lam V, Salzman N, Huang Y-W, Yu J, Zhang J, Wang L-S. Black raspberries and their anthocyanin and fiber fractions alter the composition and diversity of Gut Microbiota in F-344 Rats. Nutr Cancer. 2017;69 (6):943–51. doi:10.1080/01635581.2017.1340491.
  • Zhang L, Carmody RN, Kalariya HM, Duran RM, Moskal K, Poulev A, et al. Grape proanthocyanidin-induced intestinal bloom of Akkermansia Muciniphila Is dependent on its baseline abundance and precedes activation of host genes related to metabolic health. J Nutr Biochem. 2018;56:142–51. doi:10.1016/j.jnutbio.2018.02.009.
  • Song H, Shen X, Deng R, Zhang Y, Zheng X. Dietary anthocyanin-rich extract of Açai protects from diet-induced obesity, liver steatosis, and insulin resistance with modulation of Gut microbiota in Mice. Nutrition. 2021;86:111176. doi:10.1016/j.nut.2021.111176.
  • Nakano H, Wu S, Sakao K, Hara T, He J, Garcia S, et al. Bilberry anthocyanins ameliorate NAFLD by improving dyslipidemia and Gut microbiome dysbiosis. Nutrients. 2020;12(11):3252. doi:10.3390/nu12113252.
  • Marques C, Fernandes I, Meireles M, Faria A, Spencer JPE, Mateus N, Calhau C. Gut microbiota modulation accounts for the neuroprotective properties of anthocyanins. Sci Rep. 2018;8(1):11341. doi:10.1038/s41598-018-29744-5.
  • Si X, Bi J, Chen Q, Cui H, Bao Y, Tian J, et al. Effect of blueberry anthocyanin-rich extracts on peripheral and hippocampal antioxidant defensiveness: The analysis of the serum fatty acid species and Gut microbiota profile. J Agric Food Chem. 2021;69(12):3658–66. doi:10.1021/acs.jafc.0c07637.
  • Hädrich G, Vaz GR, Maidana M, Kratz JM, Loch-Neckel G, Favarin DC, et al. Anti-Inflammatory effect and toxicology analysis of oral delivery Quercetin Nanosized emulsion in rats. Pharm Res. 2016;33(4):983–93. doi:10.1007/s11095-015-1844-6.
  • Rogerio AP, Dora CL, Andrade EL, Chaves JS, Silva LFC, Lemos-Senna E, Calixto JB. Anti-Inflammatory effect of quercetin-loaded Microemulsion in the airways allergic inflammatory model in mice. Pharmacol Res. 2010;61(4):288–97. doi:10.1016/j.phrs.2009.10.005.
  • Iova GM, Calniceanu H, Popa A, Szuhanek CA, Marcu O, Ciavoi G, Scrobota I. The antioxidant effect of curcumin and rutin on oxidative stress biomarkers in experimentally induced periodontitis in Hyperglycemic Wistar Rats. Molecules. 2021;26(5):1332. doi:10.3390/molecules26051332.
  • Niture NT, Ansari AA, Naik SR. Anti-Hyperglycemic activity of rutin in streptozotocin-induced diabetic rats: an effect mediated through cytokines, antioxidants and lipid biomarkers. Indian J Exp Biol. 2014;52(7):720–7.
  • Liu Z, Yao X, Sun B, Jiang W, Liao C, Dai X, et al. Pretreatment with Kaempferol attenuates Microglia-mediate neuroinflammation by inhibiting MAPKs–NF–ΚB signaling pathway and pyroptosis after secondary spinal cord injury. Free Radic Biol Med. 2021;168:142–54. doi:10.1016/j.freeradbiomed.2021.03.037.
  • Li W-H, Cheng X, Yang Y-L, Liu M, Zhang S-S, Wang Y-H, et al. Kaempferol attenuates neuroinflammation and blood brain barrier dysfunction to improve neurological deficits in cerebral ischemia/reperfusion Rats. Brain Res. 2019;1722:146361. doi:10.1016/j.brainres.2019.146361.
  • Wu Z, Huang S, Li T, Li N, Han D, Zhang B, et al. Gut Microbiota from green Tea polyphenol-dosed mice improves intestinal epithelial homeostasis and ameliorates experimental colitis. Microbiome. 2021;9(1):184. doi:10.1186/s40168-021-01115-9.
  • Lee HA, Song YR, Park MH, Chung H, Na HS, Chung J. Catechin ameliorates porphyromonas Gingivalis- induced inflammation via the regulation of TLR2/4 and inflammasome signaling. J Periodontol. 2020;91(5):661–70. doi:10.1002/JPER.18-0004.
  • Zhong X, Liu M, Yao W, Du K, He M, Jin X, et al. Epigallocatechin-3-gallate attenuates microglial inflammation and neurotoxicity by suppressing the activation of canonical and noncanonical inflammasome via TLR4/NF-κB pathway. Mol Nutr Food Res. 2019;63(21). doi:10.1002/mnfr.201801230.
  • Chen X, Li H, Wang Z, Zhou Q, Chen S, Yang B, et al. Quercetin protects the vascular endothelium against iron overload damages via ROS/ADMA/DDAH II/ENOS/NO pathway. Eur J Pharmacol. 2020;868:172885. doi:10.1016/j.ejphar.2019.172885.
  • Zaabalawi A, Astley C, Renshall L, Beards F, Lightfoot AP, Degens H, et al. Tetramethoxystilbene-Loaded liposomes restore reactive-oxygen-species-mediated attenuation of dilator responses in Rat aortic vessels Ex vivo. Molecules. 2019;24(23):4360. doi:10.3390/molecules24234360.
  • Erlejman AG, Jaggers G, Fraga CG, Oteiza PI. TNFα-Induced NF-ΚB activation and cell oxidant production Are modulated by hexameric procyanidins in caco-2 cells. Arch Biochem Biophys. 2008;476(2):186–95. doi:10.1016/j.abb.2008.01.024.
  • Dulebohn RV, Yi W, Srivastava A, Akoh CC, Krewer G, Fischer JG. Effects of blueberry (Vaccinium Ashei) on DNA damage, lipid peroxidation, and phase II enzyme activities in Rats. J Agric Food Chem. 2008;56(24):11700–6. doi:10.1021/jf802405y.
  • Williamson G, Holst B. Dietary Reference Intake (DRI) value for dietary polyphenols: are we heading in the right direction? Br J Nutr. 2008;99(S3):S55–8. doi:10.1017/S0007114508006867.
  • Del Bo’ C, Bernardi S, Marino M, Porrini M, Tucci M, Guglielmetti S, et al. Systematic review on polyphenol intake and health outcomes: is there sufficient evidence to define a health-promoting polyphenol-rich dietary pattern? Nutrients. 2019;11(6):1355. doi:10.3390/nu11061355.
  • Castro-Barquero S, Lamuela-Raventós R, Doménech M, Estruch R. Relationship between Mediterranean dietary polyphenol intake and obesity. Nutrients. 2018;10(10):1523. doi:10.3390/nu10101523.
  • McGarel C, Pentieva K, Strain JJ, McNulty H. Emerging roles for folate and related B-vitamins in brain health across the lifecycle. Proc Nutr Soc. 2015;74(1):46–55. doi:10.1017/S0029665114001554.
  • Qin B, Plassman BL, Edwards LJ, Popkin BM, Adair LS, Mendez MA. Fish intake Is associated with slower cognitive decline in Chinese older adults. J Nutr. 2014;144(10):1579–85. doi:10.3945/jn.114.193854.
  • Berendsen AM, Kang JH, Feskens EJM, de Groot CPGM, Grodstein F, van de Rest O. Association of long-term adherence to the mind diet with cognitive function and cognitive decline in American women. J Nutr Health Aging. 2018;22(2):222–9. doi:10.1007/s12603-017-0909-0.
  • Cherian L, Wang Y, Fakuda K, Leurgans S, Aggarwal N, Morris M. Mediterranean-Dash intervention for neurodegenerative delay (mind) diet slows cognitive decline after stroke. J Prev Alzheimers Dis. 2019: 1–7. doi:10.14283/jpad.2019.28.
  • Román GC, Jackson RE, Gadhia R, Román AN, Reis J. Mediterranean diet: The role of long-chain ω-3 fatty acids in fish; polyphenols in fruits, vegetables, cereals, coffee, Tea, cacao and wine; probiotics and vitamins in prevention of stroke, age-related cognitive decline, and Alzheimer disease. Rev Neurol (Paris). 2019;175(10):724–41. doi:10.1016/j.neurol.2019.08.005.
  • Scarmeas N, Luchsinger JA, Mayeux R, Stern Y. Mediterranean diet and Alzheimer disease mortality. Neurology. 2007;69(11):1084–93. doi:10.1212/01.wnl.0000277320.50685.7c.
  • Shah R. The role of nutrition and diet in Alzheimer disease: a systematic review. J Am Med Dir Assoc. 2013;14(6):398–402. doi:10.1016/j.jamda.2013.01.014.
  • Lamport DJ, Saunders C, Butler LT, Spencer JP. Fruits, vegetables, 100% juices, and cognitive function. Nutr Rev. 2014;72(12):774–89. doi:10.1111/nure.12149.
  • Kennedy DO. Polyphenols and the human brain: plant “secondary metabolite” ecologic roles and endogenous signaling functions drive benefits. Adv Nutr. 2014;5(5):515–33. doi:10.3945/an.114.006320.
  • Rabassa M, Cherubini A, Zamora-Ros R, Urpi-Sarda M, Bandinelli S, Ferrucci L, Andres-Lacueva C. Low levels of a urinary biomarker of dietary polyphenol are associated with substantial cognitive decline over a 3-year period in older adults: the invecchiare in chianti study. J Am Geriatr Soc. 2015;63(5):938–46. doi:10.1111/jgs.13379.
  • Shishtar E, Rogers GT, Blumberg JB, Au R, Jacques PF. Long-Term dietary flavonoid intake and risk of Alzheimer disease and related dementias in the Framingham Offspring Cohort. Am J Clin Nutr. 2020;112(2):343–53. doi:10.1093/ajcn/nqaa079.
  • Janssen CIF, Jansen D, Mutsaers MPC, Dederen PJWC, Geenen B, Mulder MT, Kiliaan AJ. The effect of a high-Fat diet on brain plasticity, inflammation and cognition in female ApoE4-knockin and ApoE-knockout Mice. PLoS One. 2016;11(5):e0155307. doi:10.1371/journal.pone.0155307.
  • Saiyasit N, Chunchai T, Apaijai N, Pratchayasakul W, Sripetchwandee J, Chattipakorn N, Chattipakorn SC. Chronic high-Fat diet consumption induces an alteration in plasma/brain neurotensin signaling, metabolic disturbance, systemic inflammation/oxidative stress, brain apoptosis, and dendritic spine loss. Neuropeptides. 2020;82:102047. doi:10.1016/j.npep.2020.102047.
  • Pistell PJ, Morrison CD, Gupta S, Knight AG, Keller JN, Ingram DK, Bruce-Keller AJ. Cognitive impairment following high Fat diet consumption is associated with brain inflammation. J Neuroimmunol. 2010;219(1–2):25–32. doi:10.1016/j.jneuroim.2009.11.010.
  • Lemprière S. New tools could improve Alzheimer disease diagnosis from structural MRI. Nat Rev Neurol. 2020;16(6):297. doi:10.1038/s41582-020-0357-z.
  • Promteangtrong C, Kolber M, Ramchandra P, Moghbel M, Houshmand S, Schöll M, et al. Multimodality imaging approach in Alzheimer disease. Part I: structural MRI, functional MRI, diffusion tensor imaging and magnetization transfer imaging. Dement Neuropsychol. 2015;9(4):318–29. doi:10.1590/1980-57642015DN94000318.
  • Long X, Chen L, Jiang C, Zhang L. Prediction and classification of Alzheimer disease based on quantification of MRI deformation. PLoS One. 2017;12(3):e0173372. doi:10.1371/journal.pone.0173372.
  • Aguilar C, Muehlboeck J-S, Mecocci P, Vellas B, Tsolaki M, Kloszewska I, et al. Application of a MRI based index to longitudinal atrophy change in Alzheimer disease, mild cognitive impairment and healthy older individuals in the AddNeuroMed Cohort. Front Aging Neurosci. 2014: 6. doi:10.3389/fnagi.2014.00145.
  • Cash DM, Ridgway GR, Liang Y, Ryan NS, Kinnunen KM, Yeatman T, et al. The pattern of atrophy in familial Alzheimer disease: volumetric MRI results from the DIAN study. Neurology. 2013;81(16):1425–33. doi:10.1212/WNL.0b013e3182a841c6.
  • Lazarou I, Nikolopoulos S, Dimitriadis SI, (Yiannis) Kompatsiaris I, Spilioti M, Tsolaki M. Is brain connectome research the future frontier for subjective cognitive decline? A systematic review. Clin Neurophysiol. 2019;130(10):1762–80. doi:10.1016/j.clinph.2019.07.004.
  • Guo H, Song X, Vandorpe R, Zhang Y, Chen W, Zhang N, et al. Evaluation of common structural brain changes in aging and Alzheimer disease with the Use of an MRI-based brain atrophy and lesion index: a comparison between T1WI and T2WI at 1.5 T and 3 T. Am J Neuroradiology. 2014;35(3):504–12. doi:10.3174/ajnr.A3709.
  • Lieb W. Association of plasma leptin levels with incident Alzheimer disease and MRI measures of brain aging. JAMA. 2009;302(23):2565. doi:10.1001/jama.2009.1836.
  • Tarroun A, Bonnefoy M, Bouffard-Vercelli J, Gedeon C, Vallee B, Cotton F. Could linear MRI measurements of hippocampus differentiate normal brain aging in elderly persons from Alzheimer disease? Surg Radiol Anat. 2007;29(1):77–81. doi:10.1007/s00276-006-0163-3.
  • Shishtar E, Rogers GT, Blumberg JB, Au R, DeCarli C, Jacques PF. Flavonoid intake and MRI markers of brain health in the Framingham Offspring Cohort. J Nutr. 2020;150(6):1545–53. doi:10.1093/jn/nxaa068.
  • Desideri G, Kwik-Uribe C, Grassi D, Necozione S, Ghiadoni L, Mastroiacovo D, et al. Benefits in cognitive function, blood pressure, and insulin resistance through cocoa flavanol consumption in elderly subjects with mild cognitive impairment. Hypertension. 2012;60(3):794–801. doi:10.1161/HYPERTENSIONAHA.112.193060.
  • Brickman AM, Khan UA, Provenzano FA, Yeung L-K, Suzuki W, Schroeter H, et al. Enhancing dentate gyrus function with dietary flavanols improves cognition in older adults. Nat Neurosci. 2014;17(12):1798–803. doi:10.1038/nn.3850.
  • Ghosh TS, Rampelli S, Jeffery IB, Santoro A, Neto M, Capri M, et al. Mediterranean diet intervention alters the Gut microbiome in older people reducing frailty and improving health status: the NU-AGE 1-year dietary intervention across five European countries. Gut. 2020;69(7):1218–28. doi:10.1136/gutjnl-2019-319654.
  • Kuriyama S, Hozawa A, Ohmori K, Shimazu T, Matsui T, Ebihara S, et al. Green Tea consumption and cognitive function: a cross-sectional study from the Tsurugaya Project. Am J Clin Nutr. 2006;83(2):355–61. doi:10.1093/ajcn/83.2.355.
  • Kesse-Guyot E, Fezeu L, Andreeva VA, Touvier M, Scalbert A, Hercberg S, Galan P. Total and specific polyphenol intakes in midlife Are associated with cognitive function measured 13 years Later3. J Nutr. 2012;142(1):76–83. doi:10.3945/jn.111.144428.
  • Cheatham CL, Canipe LG, Millsap G, Stegall JM, Chai SC, Sheppard KW, Lila MA. Six-month intervention with wild blueberries improved speed of processing in mild cognitive decline: a double-blind, placebo-controlled, randomized clinical trial. Nutr Neurosci. 2023;26(10):1019–33. doi:10.1080/1028415X.2022.2117475.
  • Yeh T-S, Yuan C, Ascherio A, Rosner BA, Willett WC, Blacker D. Long-Term dietary flavonoid intake and subjective cognitive decline in US men and women. Neurology. 2021;97(10):e1041–e1056. doi:10.1212/WNL.0000000000012454.
  • Mastroiacovo D, Kwik-Uribe C, Grassi D, Necozione S, Raffaele A, Pistacchio L, et al. Cocoa flavanol consumption improves cognitive function, blood pressure control, and metabolic profile in elderly subjects: the Cocoa, Cognition, and Aging (CoCoA) study—a randomized controlled trial. Am J Clin Nutr. 2015;101(3):538–48. doi:10.3945/ajcn.114.092189.
  • Márquez Campos E, Jakobs L, Simon M-C. Antidiabetic effects of flavan-3-Ols and their microbial metabolites. Nutrients. 2020;12(6):1592. doi:10.3390/nu12061592.
  • Gratton G, Weaver SR, Burley CV, Low KA, Maclin EL, Johns PW, et al. Dietary flavanols improve cerebral cortical oxygenation and cognition in healthy adults. Sci Rep. 2020;10(1):19409. doi:10.1038/s41598-020-76160-9.
  • Kim D, Hughes TM, Lipford ME, Craft S, Baker LD, Lockhart SN, et al. Relationship between cerebrovascular reactivity and cognition Among people with risk of cognitive decline. Front Physiol. 2021: 12. doi:10.3389/fphys.2021.645342.
  • Lee CC, Kim JH, Kim JS, Oh YS, Han SM, Park JHY, et al. 5-(3′,4′-Dihydroxyphenyl-γ-Valerolactone), a major microbial metabolite of proanthocyanidin, attenuates THP-1 monocyte-endothelial adhesion. Int J Mol Sci. 2017;18(7):1363. doi:10.3390/ijms18071363.
  • Baynham R, Veldhuijzen van Zanten JJCS, Johns PW, Pham QS, Rendeiro C. Cocoa flavanols improve vascular responses to acute mental stress in young healthy adults. Nutrients. 2021;13(4):1103. doi:10.3390/nu13041103.
  • Hodgson JM, Croft KD. Dietary flavonoids: effects on endothelial function and blood pressure. J Sci Food Agric. 2006;86(15):2492–8. doi:10.1002/jsfa.2675.
  • Egert S, Bosy-Westphal A, Seiberl J, Kürbitz C, Settler U, Plachta-Danielzik S, et al. Quercetin reduces systolic blood pressure and plasma oxidised Low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype: a double-blinded, placebo-controlled cross-over study. Br J Nutr. 2009;102(7):1065–74. doi:10.1017/S0007114509359127.
  • Zahedi M, Ghiasvand R, Feizi A, Asgari G, Darvish L. Does quercetin improve cardiovascular risk factors and inflammatory biomarkers in women with type 2 diabetes: a double-blind randomized controlled clinical trial. Int J Prev Med. 2013;4(7):777–85.
  • Boots AW, Drent M, de Boer VCJ, Bast A, Haenen GRMM. Quercetin reduces markers of oxidative stress and inflammation in sarcoidosis. Clin Nutr. 2011;30(4):506–12. doi:10.1016/j.clnu.2011.01.010.
  • Lee KS, Park SN. Cytoprotective effects and mechanisms of Quercetin, Quercitrin and Avicularin Isolated from Lespedeza Cuneata G. Don against ROS-induced cellular damage. J Ind Eng Chem. 2019;71:160–6. doi:10.1016/j.jiec.2018.11.018.
  • Lei X, Chao H, Zhang Z, Lv J, Li S, Wei H, et al. Neuroprotective effects of quercetin in a mouse model of brain ischemic/reperfusion injury via anti-apoptotic mechanisms based on the Akt pathway. Mol Med Rep. 2015;12(3):3688–96. doi:10.3892/mmr.2015.3857.
  • Nishihira J, Nishimura M, Kurimoto M, Kagami-Katsuyama H, Hattori H, Nakagawa T, et al. The effect of 24-week continuous intake of quercetin-rich onion on Age-related cognitive decline in healthy elderly people: a randomized, double-blind, placebo-controlled, parallel-group comparative clinical trial. J Clin Biochem Nutr. 2021;69(2):21–17. doi:10.3164/jcbn.21-17.
  • Fairlie-Jones L, Davison K, Fromentin E, Hill A. The effect of anthocyanin-rich foods or extracts on vascular function in adults: a systematic review and meta-analysis of randomised controlled trials. Nutrients. 2017;9(8):908. doi:10.3390/nu9080908.
  • Mattioli R, Francioso A, Mosca L, Silva P. Anthocyanins: a comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules. 2020;25(17):3809. doi:10.3390/molecules25173809.
  • Zhu Y, Ling W, Guo H, Song F, Ye Q, Zou T, et al. Anti-Inflammatory effect of purified dietary anthocyanin in adults with hypercholesterolemia: a randomized controlled trial. Nutr, Metab Cardiovasc Dis. 2013;23(9):843–9. doi:10.1016/j.numecd.2012.06.005.
  • Kent K, Charlton K, Roodenrys S, Batterham M, Potter J, Traynor V, et al. Consumption of anthocyanin-rich cherry juice for 12 weeks improves memory and cognition in older adults with mild-to-moderate dementia. Eur J Nutr. 2017;56(1):333–41. doi:10.1007/s00394-015-1083-y.
  • Travica N, D’Cunha NM, Naumovski N, Kent K, Mellor DD, Firth J, et al. The effect of blueberry interventions on cognitive performance and mood: a systematic review of randomized controlled trials. Brain Behav Immun. 2020;85:96–105. doi:10.1016/j.bbi.2019.04.001.
  • Whyte A, Cheng N, Fromentin E, Williams C. A randomized, double-blinded, placebo-controlled study to compare the safety and efficacy of Low dose enhanced wild blueberry powder and wild blueberry extract (ThinkBlueTM) in maintenance of episodic and working memory in older adults. Nutrients. 2018;10(6):660. doi:10.3390/nu10060660.
  • Krikorian R, Kalt W, McDonald JE, Shidler MD, Summer SS, Stein AL. Cognitive performance in relation to urinary anthocyanins and their flavonoid-based products following blueberry supplementation in older adults at risk for dementia. J Funct Foods. 2020;64:103667. doi:10.1016/j.jff.2019.103667.
  • Boespflug EL, Eliassen JC, Dudley JA, Shidler MD, Kalt W, Summer SS, et al. Enhanced neural activation with blueberry supplementation in mild cognitive impairment. Nutr Neurosci. 2018;21(4):297–305. doi:10.1080/1028415X.2017.1287833.
  • Cheatham C, Vazquez-Vidal I, Medlin A, Voruganti V. Blueberry consumption affects serum uric acid concentrations in older adults in a Sex-specific manner. Antioxidants. 2016;5(4):43. doi:10.3390/antiox5040043.
  • Khan N, Mukhtar H. Tea polyphenols in promotion of human health. Nutrients. 2018;11(1):39. doi:10.3390/nu11010039.
  • Ide K, Yamada H, Takuma N, Park M, Wakamiya N, Nakase J, et al. Green Tea consumption affects cognitive dysfunction in the elderly: a pilot study. Nutrients. 2014;6(10):4032–42. doi:10.3390/nu6104032.
  • Khalesi S, Sun J, Buys N, Jamshidi A, Nikbakht-Nasrabadi E, Khosravi-Boroujeni H. Green Tea catechins and blood pressure: a systematic review and meta-analysis of randomised controlled trials. Eur J Nutr. 2014;53(6):1299–311. doi:10.1007/s00394-014-0720-1.
  • Arcambal A, Taïlé J, Couret D, Planesse C, Veeren B, Diotel N, et al. Protective effects of antioxidant polyphenols against hyperglycemia-mediated alterations in cerebral endothelial cells and a mouse stroke model. Mol Nutr Food Res. 2020;64(13). doi:10.1002/mnfr.201900779.
  • Bariexca T, Ezdebski J, Redan B, Vinson J. Pure polyphenols and cranberry juice high in anthocyanins increase antioxidant capacity in animal organs. Foods. 2019;8(8):340. doi:10.3390/foods8080340.
  • Campos-Esparza MR, Sánchez-Gómez MV, Matute C. Molecular mechanisms of neuroprotection by Two natural antioxidant polyphenols. Cell Calcium. 2009;45(4):358–68. doi:10.1016/j.ceca.2008.12.007.
  • Singh M, Arseneault M, Sanderson T, Murthy V, Ramassamy C. Challenges for research on polyphenols from foods in Alzheimer’s disease: bioavailability, metabolism, and cellular and molecular mechanisms. J Agric Food Chem. 2008;56(13):4855–73. doi:10.1021/jf0735073.
  • Dueñas M, Muñoz-González I, Cueva C, Jiménez-Girón A, Sánchez-Patán F, Santos-Buelga C, et al. A survey of modulation of Gut microbiota by dietary polyphenols. Biomed Res Int. 2015;2015:1–15. doi:10.1155/2015/850902.
  • Corrêa TAF, Rogero MM, Hassimotto NMA, Lajolo FM. The Two-Way polyphenols-microbiota interactions and their effects on obesity and related metabolic diseases. Front Nutr. 2019: 6. doi:10.3389/fnut.2019.00188.
  • Cortés-Martín A, Selma MV, Tomás-Barberán FA, González-Sarrías A, Espín JC. Where to look into the puzzle of polyphenols and health? The postbiotics and Gut microbiota associated with human metabotypes. Mol Nutr Food Res. 2020;64(9). doi:10.1002/mnfr.201900952.
  • Selma MV, González-Sarrías A, Salas-Salvadó J, Andrés-Lacueva C, Alasalvar C, Örem A, et al. The Gut microbiota metabolism of pomegranate or walnut ellagitannins yields two urolithin-metabotypes that correlate with cardiometabolic risk biomarkers: comparison between normoweight, overweight-obesity and metabolic syndrome. Clin Nutr. 2018;37(3):897–905. doi:10.1016/j.clnu.2017.03.012.
  • Barroso E, Muñoz-González I, Jiménez E, Bartolomé B, Moreno-Arribas MV, Peláez C, et al. Phylogenetic profile of Gut microbiota in healthy adults after moderate intake of Red wine. Mol Nutr Food Res. 2017;61(3). doi:10.1002/mnfr.201600620.
  • Ma G, Chen Y. Polyphenol supplementation benefits human health via Gut microbiota: a systematic review via meta-analysis. J Funct Foods. 2020;66:103829. doi:10.1016/j.jff.2020.103829.
  • Cheatham CL, Nieman DC, Neilson AP, Lila MA. Enhancing the cognitive effects of flavonoids with physical activity: is there a case for the Gut microbiome? Front Neurosci. 2022;16; doi:10.3389/fnins.2022.833202.
  • Reddy VP, Aryal P, Robinson S, Rafiu R, Obrenovich M, Perry G. Polyphenols in Alzheimer’s disease and in the Gut–Brain axis. Microorganisms. 2020;8(2):199. doi:10.3390/microorganisms8020199.
  • Cryan JF, O’Riordan KJ, Sandhu K, Peterson V, Dinan TG. The Gut microbiome in neurological disorders. Lancet Neurol. 2020;19(2):179–94. doi:10.1016/S1474-4422(19)30356-4.
  • Dinan TG, Cryan JF. Gut instincts: microbiota as a Key regulator of brain development, ageing and neurodegeneration. J Physiol. 2017;595(2):489–503. doi:10.1113/JP273106.
  • Sun M, Ma K, Wen J, Wang G, Zhang C, Li Q, et al. A review of the brain-Gut-microbiome axis and the potential role of microbiota in Alzheimer’s disease. J Alzheimer’s Dis. 2020;73(3):849–65. doi:10.3233/JAD-190872.
  • Bonfili L, Cecarini V, Gogoi O, Gong C, Cuccioloni M, Angeletti M, et al. Microbiota modulation as preventative and therapeutic approach in Alzheimer’s disease. FEBS J. 2021;288(9):2836–55. doi:10.1111/febs.15571.
  • Mayer EA, Knight R, Mazmanian SK, Cryan JF, Tillisch K. Gut microbes and the brain: paradigm shift in neuroscience. J Neurosci. 2014;34(46):15490–6. doi:10.1523/JNEUROSCI.3299-14.2014.
  • Canipe LG, Sioda M, Cheatham CL. Diversity of the Gut-microbiome related to cognitive behavioral outcomes in healthy older adults. Arch Gerontol Geriatr. 2021;96:104464. doi:10.1016/j.archger.2021.104464.
  • Boehme M, van de Wouw M, Bastiaanssen TFS, Olavarría-Ramírez L, Lyons K, Fouhy F, et al. Mid-Life microbiota crises: middle Age Is associated with pervasive neuroimmune alterations that Are reversed by targeting the Gut microbiome. Mol Psychiatry. 2020;25(10):2567–83. doi:10.1038/s41380-019-0425-1.
  • Cryan JF, Boehme M, Dinan TG. Is the fountain of youth in the Gut microbiome? J Physiol. 2019;597(9):2323–4. doi:10.1113/JP277784.
  • Scott KA, Ida M, Peterson VL, Prenderville JA, Moloney GM, Izumo T, et al. Revisiting Metchnikoff: age-related alterations in microbiota-Gut-Brain axis in the mouse. Brain Behav Immun. 2017;65:20–32. doi:10.1016/j.bbi.2017.02.004.
  • Donoso F, Egerton S, Bastiaanssen TFS, Fitzgerald P, Gite S, Fouhy F, et al. Polyphenols selectively reverse early-life stress-induced behavioural, neurochemical and microbiota changes in the Rat. Psychoneuroendocrinology. 2020;116:104673. doi:10.1016/j.psyneuen.2020.104673.
  • Ballesteros-Álvarez J, Nguyen W, Sivapatham R, Rane A, Andersen JK. Urolithin A reduces amyloid-beta load and improves cognitive deficits uncorrelated with plaque burden in a mouse model of Alzheimer’s disease. Geroscience. 2023;45(2):1095–113. doi:10.1007/s11357-022-00708-y.
  • Sekikawa A, Wharton W, Butts B, Veliky CV, Garfein J, Li J, et al. Potential protective mechanisms of S-equol, a metabolite of Soy isoflavone by the Gut microbiome, on cognitive decline and dementia. Int J Mol Sci. 2022;23(19):11921. doi:10.3390/ijms231911921.
  • Yeh TS, Yuan C, Ascherio A, Rosner BA, Willett WC, Blacker D. Long-Term dietary flavonoid intake and subjective cognitive decline in US Men and women. Neurology. 2021;97(10):e1041–56. doi:10.1212/WNL.0000000000012454.
  • Sesso HD, Manson JE, Aragaki AK, Rist PM, Johnson LG, Friedenberg G, et al. Effect of Cocoa Flavanol supplementation for the prevention of cardiovascular disease events: The COcoa supplement and multivitamin outcomes study (COSMOS) randomized clinical trial. Am J Clin Nutr. 2022;115(6):1490–500. doi:10.1093/ajcn/nqac055.