Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Latest Articles
142
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Assessing the pattern electroretinogram as a proxy measure for dopamine in the context of iron deficiency

ORCID Icon & ORCID Icon

References

  • Stevens GA, Finucane MM, De-Regil LM, Paciorek CJ, Flaxman SR, Branca F, et al. Global, regional, and national trends in haemoglobin concentration and prevalence of total and severe anaemia in children and pregnant and non-pregnant women for 1995-2011: a systematic analysis of population-representative data. Lancet Glob Health. 2013;1(1):e16–25.
  • DellaValle DM, Haas JD. Iron status is associated with endurance performance and training in female rowers. Med Sci Sports Exerc. 2012;44(8):1552–9.
  • DellaValle DM, Haas JD. Iron supplementation improves energetic efficiency in iron-depleted female rowers. Med Sci Sports Exerc. 2014;46(6):1204–15.
  • Untoro J, Gross R, Schultink W, Sediaoetama D. The association between BMI and haemoglobin and work productivity among Indonesian female factory workers. Eur J Clin Nutr. 1998;52(2):131–5.
  • Wenger MJ, Murray-Kolb LE, Nevins JEH, Venkatramanan S, Reinhart GA, Wesley A, et al. Consumption of a double-fortified salt affects perceptual, attentional, and mnemonic functioning in women in a randomized controlled trial in India. J Nutr. 2017;147(12):2297–308.
  • Wenger MJ, DellaValle DM, Muuray-Kolb LE, Haas JD. Effect of iron deficiency on simultaneous measures of behavior, brain activity, and energy expenditure in the performance of a cognitive task. Nutr Neurosci. 2019;22(3):196–206.
  • Scott SP, Murray-Kolb LE. Iron status is associated with performance on executive functioning tasks in nonanemic young women. J Nutr. 2016;146(1):30–7.
  • Murray-Kolb LE, Wenger MJ, Scott SP, Rhoten SE, Lung’aho MG, Haas JD. Consumption of iron-biofortified beans positively affects cognitive performance in 18- to 27-year-old Rwandan female college students in an 18-week randomized controlled efficacy trial. J Nutr. 2017. doi: 10.3945/jn.117.255356
  • Scott SP, Murray-Kolb LE, Wenger MJ, Udipi SA, Ghugre PS, Boy E, et al. Cognitive performance in Indian school-going adolescents is positively affected by consumption of iron-biofortified pearl millet: a 6-month randomized controlled efficacy trial. J Nutr. 2018;148(9):1462–71.
  • Wenger MJ, Murray Kolb LE, Scott SP, Boy E, Haas JD. Modeling relationships between iron status, behavior, and brain electrophysiology: evidence from a randomized study involving a biofortified grain in Indian adolescents. BMC Public Health. 2022;22(1):1299.
  • Scott SP, De Souza MJ, Koehler K, Murray-Kolb LE. Combined iron deficiency and low aerobic fitness doubly burden academic performance among women attending university. J Nutr. 2017;147(1):104–9.
  • Beard JL, Connor JR. Iron status and neural functioning. Annu Rev Nutr. 2003;23(1):41–58.
  • Grubić Kezele T, Ćurko-Cofek B. Age-related changes and sex-related differences in brain iron metabolism. Nutrients. 2020;12(9):2601.
  • Youdim M, Green A. Biogenic monoamine metabolism and functional activity in iron-deficient rats: behavioural correlates. In: Ciba Foundation Symposium. Vol. 51; 1977. p. 201–25.
  • Youdim M, Ben-Shachar D, Ashkenazi R, Yehuda S. Brain iron and dopamine receptor function. Adv Biochem Psychopharmacol. 1983;37:309–21.
  • Youdim MB, Yehuda S. The neurochemical basis of cognitive deficits induced by brain iron deficiency: involvement of dopamine-opiate system. Cell Mol Biol. 2000;46(3):491–500.
  • Erikson KM, Jones BC, Hess EJ, Zhang Q, Beard JL. Iron deficiency decreases dopamine D1 and D2 receptors in rat brain. Pharmacol Biochem Behav. 2001;69(3):409–18.
  • Unger EL, Bianco LE, Jones BC, Allen RP, Earley CJ. Low brain iron effects and reversibility on striatal dopamine dynamics. Exp Neurol. 2014;261:462–8.
  • Pino J, da Luz M, Antunes HKM, Giampá S, Martins VR, Lee KS. Iron-restricted diet affects brain ferritin levels, dopamine metabolism and cellular prion protein in a region-specific manner. Front Mol Neurosci. 2017;10:1–13.
  • Dichtl S, Haschka D, Nairz M, Seifert M, Volani C, Lutz O, et al. Dopamine promotes cellular iron accumulation and oxidative stress responses in macrophages. Biochem Pharmacol. 2018;148:193–201.
  • Li Y, Kim J, Buckett PD, Böhlke M, Maher TJ, Wessling-Resnick M. Severe postnatal iron deficiency alters emotional behavior and dopamine levels in the prefrontal cortex of young male rats. J Nutr. 2011;141(12):2133–8.
  • Parr A, Larsen B, Calabro F, Tervo-Clemmens B, Luna B. Neuroimaging human dopamine-related neurophysiology across development. In: Dopaminergic system function and dysfunction: experimental approaches. Springer; 2022. p. 299–326.
  • Marín-Valencia I, Serrano M, Ormazabal A, Pérez-Dueñas B, García-Cazorla A, Campistol J, et al. Biochemical diagnosis of dopaminergic disturbances in paediatric patients: analysis of cerebrospinal fluid homovanillic acid and other biogenic amines. Clin Biochem. 2008;41(16-17):1306–15.
  • Larsen B, Olafsson V, Calabro F, Laymon C, Tervo-Clemmens B, Campbell E, et al. Maturation of the human striatal dopamine system revealed by PET and quantitative MRI. Nat Commun. 2020;11(1):846.
  • Kleven MS, Koek W. Differential effects of direct and indirect dopamine agonists on eye blink rate in cynomolgus monkeys. J Pharmacol Exp Ther. 1996;279(3):1211–9.
  • Slagter HA, Georgopoulou K, Frank MJ. Spontaneous eye blink rate predicts learning from negative, but not positive, outcomes. Neuropsychologia. 2015;71(C):126–32.
  • Karson CN. Spontaneous eye-blink rates and dopaminergic systems. Brain. 1983;106(3):643–53.
  • Elsworth JD, Lawrence MS, Roth RH, Taylor JR, Mailman RB, Nichols DE, et al. D1 and D2 dopamine receptors independently regulate spontaneous blink rate in the vervet monkey. J Pharmacol Exp Ther. 1991;259(2):595–600.
  • Bodis-Wollner I. Visual deficits related to dopamine deficiency in experimental animals and Parkinson’s disease patients. Trends Neurosci. 1990;13(7):296–302.
  • Masson G, Mestre D, Blin O. Dopaminergic modulation of visual sensitivity in man. Fundam Clin Pharmacol. 1993;7(8):449–63.
  • Brandies R, Yehuda S. The possible role of retinal dopaminergic system in visual performance. Neurosci Biobehav Rev. 2008;32(4):611–56.
  • Broadway JM, Frank MJ, Cavanagh JF. Dopamine D2 agonist affects visuospatial working memory distractor interference depending on individual differences in baseline working memory span. Cogn Affect Behav Neurosci. 2018;18(3):509–20.
  • Clatworthy PL, Lewis SJ, Brichard L, Hong YT, Izquierdo D, Clark L, et al. Dopamine release in dissociable striatal subregions predicts the different effects of oral methylphenidate on reversal learning and spatial working memory. J Neurosci. 2009;29(15):4690–6.
  • Dodds CM, Clark L, Dove A, Regenthal R, Baumann F, Bullmore E, et al. The dopamine D2 receptor antagonist sulpiride modulates striatal BOLD signal during the manipulation of information in working memory. Psychopharmacology. 2009;207(1):35–45.
  • Frank MJ, Seeberger LC, O’Reilly RC. By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science. 2004;306(5703):1940–3.
  • Frank MJ, O’Reilly RC. A mechanistic account of striatal dopamine function in human cognition: psychopharmacological studies with cabergoline and haloperidol. Behav Neurosci. 2006;120(3):497–517.
  • Wenger MJ, Rhoten SE, Murray-Kolb LE, Scott SP, Boy E, Gahutu JB, et al. Changes in iron status are related to changes in brain activity and behavior in Rwandan female university students: results from a randomized controlled efficacy trial involving iron-biofortified beans. J Nutr. 2019;149(4):687–97.
  • Otero GA, Fernández T, Pliego-Rivero FB, Mendieta GG. Iron therapy substantially restores qEEG maturational lag among iron-deficient anemic infants. Nutr Neurosci. 2019;22(5):363–72.
  • Lozoff B, Armony-Sivan R, Kaciroti N, Jing Y, Golub M, Jacobson SW. Eye-blinking rates are slower in infants with iron-deficiency anemia than in nonanemic iron-deficient or iron-sufficient infants. J Nutr. 2010;140(5):1057–61.
  • Lavoie J, Illiano P, Sotnikova TD, Gainetdinov RR, Beaulieu JM, Hébert M. The electroretinogram as a biomarker of central dopamine and serotonin: potential relevance to psychiatric disorders. Biol Psychiatry. 2014;75(6):479–86.
  • Witkovsky P. Dopamine and retinal function. Doc Ophthalmol. 2004;108:17–39.
  • Harnois C, Di Paolo T. Decreased dopamine in the retinas of patients with Parkinson’s disease. Invest Ophthalmol Vis Sci. 1990;31(11):2473–5.
  • Ortuño-Lizarán I, Sánchez-Sáez X, Lax P, Serrano GE, Beach TG, Adler CH, et al. Dopaminergic retinal cell loss and visual dysfunction in Parkinson disease. Ann Neurol. 2020;88(5):893–906.
  • Langheinrich T, van Elset LT, Lagreze WA, Bach M, Lucking CH, Greenlee MW. Visual contrast response functions in Parkinson’s disease: evidence from electroretinograms, visually evoked potentials and psychophysics. Clin Neurophysiol. 2000;111:66–74.
  • Ikeda H, Head G, Ellis C. Electrophysiological signs of retinal dopamine deficiency in recently diagnosed Parkinson’s disease and a follow up study. Ophthalmic Lit. 1995;4(48):308.
  • Zar JH. Biostatistical analysis. 4th ed. Upper Saddle River (NJ): Prentice Hall; 1999.
  • Bradshaw K, Hansen R, Fulton A. Comparison of ERGs recorded with skin and corneal-contact electrodes in normal children and adults. Doc Ophthalmol. 2004;109:43–55.
  • Frank MJ, Seeberger LC, O’reilly RC. By carrot or by stick: cognitive reinforcement learning in Parkinsonism. Science. 2004;306(5703):1940–3.
  • Frank MJ, Scheres A, Sherman SJ. Understanding decision-making deficits in neurological conditions: insights from models of natural action selection. Philos Trans R Soc B Biol Sci. 2007;362(1485):1641–54.
  • Brainard DH. The psychophysics toolbox. Spat Vis. 1997;10:433–6.
  • Pelli DG. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat Vis. 1997;10(4):437–42.
  • Kleiner M, Brainard D, Pelli D, Ingling A, Murray R, Broussard C. What’s new in Psychtoolbox-3. Perception. 2007;36(14):1.
  • Bach M, Brigell MG, Hawlina M, Holder GE, Johnson MA, McCulloch DL, et al. ISCEV standard for clinical pattern electroretinography (PERG): 2012 update. Doc Ophthalmol. 2013;126:1–7.
  • Brigell M, Bach M, Barber C, Moskowitz A, Robson J. Guidelines for calibration of stimulus and recording parameters used in clinical electrophysiology of vision. Doc Ophthalmol. 2003;107(2):185–93.
  • Wenger MJ, Rhoten SE. Perceptual learning produces perceptual objects. J Exp Psychol Learn Mem Cogn. 2020;46(3):455–75.
  • Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134:9–21.
  • Kleifges K, Bigdely-Shamlo N, Kerick SE, Robbins KA. BLINKER: automated extraction of ocular indices from EEG enabling large-scale analysis. Front Neurosci. 2017;11:12.
  • Pion-Tonachini L. ICLabel tutorial: EEG independent component labeling; 2019. University of California, San Diego: Swartz Center for Computational Neuroscience.
  • Bays BC, Visscher KM, Le Dantec CC, Seitz AR. Alpha-band EEG activity in perceptual learning. J Vis. 2015;15(10):7–7.
  • Box GE, Cox DR. An analysis of transformations. J R Stat Soc Series B Methodol. 1964:211–52.
  • Arora A, Lin JJ, Gasperian A, Maldjian J, Stein J, Kahana M, et al. Comparison of logistic regression, support vector machines, and deep learning classifiers for predicting memory encoding success using human intracranial EEG recordings. J Neural Eng. 2018;15(6):066028.
  • Hayes AF. Introduction to mediation, moderation, and conditional process analysis: a regression-based approach. 3rd ed. New York: Guilford Press; 2018.
  • Baron RM, Kenny DA. The moderator–mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J Pers Soc Psychol. 1986;51(6):1173–82.
  • Murray-Kolb LE, Beard JL. Iron treatment normalizes cognitive functioning in young women. Am J Clin Nutr. 2007;85:778–87.
  • Bodis-Wollner I, Marx MS, Mitra S, Bobak P, Mylin L, Yahr M. Visual dysfunction in Parkinson’s disease: loss in spatiotemporal contrast sensitivity. Brain. 1987;110(6):1675–98.
  • Hutton JT, Morris JL, Elias JW. Levodopa improves spatial contrast sensitivity in Parkinson’s disease. Arch Neurol. 1993;50(7):721–4.
  • Cools R, Barker RA, Sahakian BJ, Robbins TW. Enhanced or impaired cognitive function in Parkinson’s disease as a function of dopaminergic medication and task demands. Cereb Cortex. 2001;11(12):1136–43.
  • Cools R, Altamirano L, D’esposito M. Reversal learning in Parkinson’s disease depends on medication status and outcome valence. Neuropsychologia. 2006;44(10):1663–73.
  • Bacher LF. Factors regulating eye blink rate in young infants. Optom Vis Sci. 2010;87(5):337–43.
  • Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175–91.
  • Dang LC, Samanez-Larkin GR, Castrellon JJ, Perkins SF, Cowan RL, Newhouse PA, et al. Spontaneous eye blink rate (EBR) is uncorrelated with dopamine D2 receptor availability and unmodulated by dopamine agonism in healthy adults. eNeuro. 2017;4(5).
  • Sescousse G, Ligneul R, van Holst RJ, Janssen LK, de Boer F, Janssen M, et al. Spontaneous eye blink rate and dopamine synthesis capacity: preliminary evidence for an absence of positive correlation. Eur J Neurosci. 2018;47(9):1081–6.
  • van den Bosch R, Hezemans FH, Määttä JI, Hofmans L, Papadopetraki D, Verkes RJ, et al. Evidence for absence of links between striatal dopamine synthesis capacity and working memory capacity, spontaneous eye-blink rate, and trait impulsivity. eLife. 2023;12:e83161.
  • Pereira JB, Kumar A, Hall S, Palmqvist S, Stomrud E, Bali D, et al. DOPA decarboxylase is an emerging biomarker for Parkinsonian disorders including preclinical Lewy body disease. Nat Aging. 2023:1–9.
  • Hadjiconstantinou M, Neff NH. Enhancing aromatic L-amino acid decarboxylase activity: implications for L-DOPA treatment in Parkinson’s disease. CNS Neurosci Ther. 2008;14(4):340–51.
  • Köhnke MD, Wiatr G, Kolb W, Köhnke AM, Schick S, Lutz U, et al. Plasma homovanillic acid: a significant association with alcoholism is independent of a functional polymorphism of the human catechol-O-methyltransferase gene. Neuropsychopharmacology. 2003;28(5):1004–10.
  • Bandopadhyay S, Singh B, Bera NK, Das SK, Nayak CR, Chaudhuri T. Plasma homovanillic acid in delusional disorder: implications for dopamine dysfunction. Neuropsychopharmacology. 2009;7(3):1583–90.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.