Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Latest Articles
156
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Natural compounds for oxidative stress and neuroprotection in schizophrenia: composition, mechanisms, and therapeutic potential

, , &

References

  • Mitra S, Natarajan R, Ziedonis D, Fan X. Antioxidant and anti-inflammatory nutrient status, supplementation, and mechanisms in patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2017;78:1–11. doi:10.1016/j.pnpbp.2017.05.005.
  • Kane JM, Correll CU. Pharmacologic treatment of schizophrenia. Dialog Clin Neurosci. 2010;12(3):345–57.
  • Girdler SJ, Confino JE, Woesner ME. Exercise as a treatment for schizophrenia: a review. Psychopharmacol Bull. 2019;49(1):56. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6386427/.
  • Madireddy S, Madireddy S. Regulation of reactive oxygen species-mediated damage in the pathogenesis of schizophrenia. Brain Sci. 2020;10(10):742.
  • Murray AJ, Rogers JC, Katshu MZUH, Liddle PF, Upthegrove R. Oxidative stress and the pathophysiology and symptom profile of schizophrenia spectrum disorders. Front Psychiatry. 2021. doi:10.3389/fpsyt.2021.703452.
  • Hardingham GE. NMDA receptor C-terminal signaling in development, plasticity, and disease. F1000 Res. 2019: 8. doi:10.12688/f1000research.19925.1.
  • Fang X, Chen Y, Wang Y, Ren J, Zhang C. Depressive symptoms in schizophrenia patients: a possible relationship between SIRT1 and BDNF. Prog Neuropsychopharmacol Biol Psychiatry. 2019. doi:10.1016/j.pnpbp.2019.109673.
  • Hardingham GE, Do KQ. Linking early-life NMDAR hypofunction and oxidative stress in schizophrenia pathogenesis. Nat Rev Neurosci. 2016;17(2):125–34. doi:10.1038/nrn.2015.19.
  • Di Carlo P, Punzi G, Ursini G. BDNF and schizophrenia. Psychiatr Genet. 2019;29(5):200. doi:10.1097/YPG.0000000000000237.
  • Miranda M, Morici JF, Zanoni MB, Bekinschtein P. Brain-derived neurotrophic factor: a key molecule for memory in the healthy and the pathological brain. Front Cell Neurosci. 2019: 363. doi:10.3389/fncel.2019.00363.
  • Shnayder NA, Khasanova AK, Strelnik AI, Al-Zamil M, Otmakhov AP, Neznanov NG, et al. Cytokine imbalance as a biomarker of treatment-resistant schizophrenia. Int J Mol Sci. 2022;23(19):11324. doi:10.3390/ijms231911324.
  • Upthegrove R, Khandaker GM. Cytokines, oxidative stress and cellular markers of inflammation in schizophrenia. Curr Top Behav Neurosci. 2020: 49–66. doi:10.1007/7854_2018_88.
  • Trovão N, Prata J, VonDoellinger O, Santos S, Barbosa M, Coelho R. Peripheral biomarkers for first-episode psychosis—opportunities from the neuroinflammatory hypothesis of schizophrenia. Psychiatry Investig. 2019;16(3):177. doi:10.30773/pi.2018.12.19.1.
  • Li H-c, Chen Q-z, Ma Y, Zhou J-f. Imbalanced free radicals and antioxidant defense systems in schizophrenia: a comparative study. J Zhejiang Univ Sci B. 2006;7:981–6. doi:10.1631/jzus.2006.B0981.
  • Virit O, Altindag A, Yumru M, Dalkilic A, Savas HA, Selek S, et al. A defect in the antioxidant defense system in schizophrenia. Neuropsychobiology. 2009;60(2):87–93. doi:10.1159/000239684.
  • Ojagbemi A, Gureje OJ. Perinatal depression in low-income women: a literature review and innovative screening approach. Curr Psychiatry Reports. 2020;22:1–7. doi:10.1007/s11920-019-1126-9.
  • Saleem A, Akhtar MF. Alternative therapy of psychosis: potential phytochemicals and drug targets in the management of schizophrenia. Front Pharmacol. 2022;13:895668. doi:10.3389/fphar.2022.895668.
  • Solberg DK, Refsum H, Andreassen OA, Bentsen H. A five-year follow-up study of antioxidants, oxidative stress and polyunsaturated fatty acids in schizophrenia. Acta Neuropsychiatr. 2019;31(4):202–12.
  • Albayrak Y, Ünsal C, Beyazyüz M, Ünal A, Kuloğlu M. Reduced total antioxidant level and increased oxidative stress in patients with deficit schizophrenia: a preliminary study. Prog Neuropsychopharmacol Biol Psychiatry. 2013;45:144–9. doi:10.1016/j.pnpbp.2013.04.020.
  • Oshodi TO, Ben-Azu B, Ishola IO, Ajayi AM, Emokpae O, Umukoro S. Molecular mechanisms involved in the prevention and reversal of ketamine-induced schizophrenia-like behavior by rutin: the role of glutamic acid decarboxylase isoform-67, cholinergic, Nox-2-oxidative stress pathways in mice. Mol Biol Rep. 2021;48:2335–50. doi:10.1007/s11033-021-06264-6.
  • Ueno H, Shimada A, Suemitsu S, Murakami S, Kitamura N, Wani K, Matsumoto Y, et al. Attenuation effects of alpha-pinene inhalation on mice with dizocilpine-induced psychiatric-like behaviour. Evid Based Complement Alternat Med. 2019. doi:10.1155/2F2019/2F2745453.
  • Karanikas E, Daskalakis NP, Agorastos A. Oxidative dysregulation in early life stress and posttraumatic stress disorder: a comprehensive review. Brain Sci. 2021;11(6):723. doi:10.3390/brainsci11060723.
  • Cuenod M, Steullet P, Cabungcal J-H, Dwir D, Khadimallah I, Klauser P, et al. Caught in vicious circles: a perspective on dynamic feed-forward loops driving oxidative stress in schizophrenia. Mol Psychiatry. 2022;27(4):1886–97. doi:10.1038/s41380-021-01374-w.
  • Kumar V, Vajawat B, Rao NP. Frontal GABA in schizophrenia: a meta-analysis of 1H-MRS studies. World J Biol Psychiatry. 2021;22(1):1–13. doi:10.1080/15622975.2020.1731925.
  • Jiménez-Fernández S, Gurpegui M, Garrote-Rojas D, Gutiérrez-Rojas L, Carretero MD, Correll CU. Oxidative stress parameters and antioxidants in adults with unipolar or bipolar depression versus healthy controls: systematic review and meta-analysis. J Affect Disord. 2022. doi:10.1016/j.jad.2022.07.015.
  • Adraoui FW, Douw L, Martens GJ, Maas DA. Connecting neurobiological features with interregional dysconnectivity in social-cognitive impairments of schizophrenia. Int J Mol Sci. 2023;24(9):7680. doi:10.3390/ijms24097680.
  • Sauce R, Pinto CASO, Ayala-Jara C, Prieto ZA, Velasco MVR, Baby AR. Preliminary protocol development of a hplc-tbars-evsc (Ex vivo stratum corneum) assay for skin research: application in a sunscreen system. Sci Pharm. 2021;89(2):17. https://www.mdpi.com/2218-0532/89/2/17.
  • Halstead S, Siskind D, Amft M, Wagner E, Yakimov V, Shih-Jung Liu Z, et al. Alteration patterns of peripheral concentrations of cytokines and associated inflammatory proteins in acute and chronic stages of schizophrenia: a systematic review and network meta-analysis. Lancet Psychiatry. 2023. doi:10.1016/S2215-0366(23)00025-1.
  • Momtazmanesh S, Zare-Shahabadi A, Rezaei N. Cytokine alterations in schizophrenia: an updated review. Front Psychiatry. 2019;10:892. doi:10.3389/fpsyt.2019.00892.
  • Ait Tayeb AEK, Poinsignon V, Chappell K, Bouligand J, Becquemont L, Verstuyft C. Major depressive disorder and oxidative stress: a review of peripheral and genetic biomarkers according to clinical characteristics and disease stages. Antioxidants (Basel). 2023;12(4):942. doi:10.3390/antiox12040942.
  • Ben-Azu B, Aderibigbe AO, Ajayi AM, Iwalewa EO. Neuroprotective effects of the ethanol stem bark extracts of Terminalia ivorensis in ketamine-induced schizophrenia-like behaviors and oxidative damage in mice. Pharm Biol. 2016;54(12):2871–9.
  • Patel K, Patel DK. The beneficial role of rutin, a naturally occurring flavonoid in health promotion and disease prevention: a systematic review and update. In: Bioactive food as dietary interventions for arthritis and related inflammatory diseases. 2019. p. 457–79. .doi:10.1016/B978-0-12-813820-5.00026-X.
  • Białoń M, Wąsik A. Advantages and limitations of animal schizophrenia models. Int J Mol Sci. 2022;23(11):5968. doi:10.3390/ijms23115968.
  • Hatziagapiou K, Kakouri E, Lambrou GI, Bethanis K, Tarantilis PA. Antioxidant properties of Crocus sativus L. and its constituents and relevance to neurodegenerative diseases; focus on Alzheimer’s and Parkinson’s disease. Curr Neuropharmacol. 2019;17(4):377–402. doi:10.2174/1570159X16666180321095705.
  • D’Onofrio G, Nabavi SM, Sancarlo D, Greco A, Pieretti S. Crocus sativus L. (Saffron) in Alzheimer’s disease treatment: bioactive effects on cognitive impairment. Curr Neuropharmacol. 2021;19(9):1606. doi:10.2174/1570159X19666210113144703.
  • Pitsikas N. Crocus sativus L. extracts and its constituents crocins and safranal; potential candidates for schizophrenia treatment? Molecules. 2021;26(5):1237. doi:10.3390/molecules26051237.
  • Sun X-j, Zhao X, Xie J-n, Wan H. Crocin alleviates schizophrenia-like symptoms in rats by upregulating silent information regulator-1 and brain derived neurotrophic factor. Compr Psychiatry. 2020;103:152209.
  • Rajput SA, Wang X-q, Yan H-C. Morin hydrate: a comprehensive review on novel natural dietary bioactive compound with versatile biological and pharmacological potential. Biomed Pharmacother. 2021;138:111511. doi:10.1016/j.biopha.2021.111511.
  • Ben-Azu B, Aderibigbe AO, Ajayi AM, Eneni A-EO, Omogbiya IA, Owoeye O, et al. Morin decreases cortical pyramidal neuron degeneration via inhibition of neuroinflammation in mouse model of schizophrenia. Int Immunopharmacol. 2019;70:338–53. doi:10.1016/j.intimp.2019.02.052.
  • Kocot J, Luchowska-Kocot D, Kiełczykowska M, Musik I, Kurzepa J. Does vitamin C influence neurodegenerative diseases and psychiatric disorders? Nutrients. 2017;9(7):659. doi:10.3390/nu9070659.
  • Brown HE, Roffman JL. Vitamin supplementation in the treatment of schizophrenia. CNS Drugs. 2014;28:611–22. doi:10.1007/s40263-014-0172-4.
  • Bentsen H, Osnes K, Refsum H, Solberg DK, Bøhmer T. A randomized placebo-controlled trial of an omega-3 fatty acid and vitamins E+ C in schizophrenia. Transl Psychiatry. 2013;3(12):e335–e335.
  • Rizvi S, Raza ST, Ahmed F, Ahmad A, Abbas S, Mahdi F. The role of vitamin E in human health and some diseases. Sultan Qaboos Univ Med J. 2014;14(2):e157.
  • Chambial S, Dwivedi S, Shukla KK, John PJ, Sharma P. Vitamin C in disease prevention and cure: an overview. Indian J Clin Biochem. 2013;28:314–28. doi:10.1007/s12291-013-0375-3.
  • Campas-Baypoli ON, Bueno-Solano C, Martínez-Ibarra DM, Camacho-Gil F, Villa-Lerma AG, Rodríguez-Núñez JR, et al. Sulforaphane (1-isothiocyanato-4-(methylsulfinyl)-butane) content in cruciferous vegetables. Arch Latinoam Nutr. 2009;59(1):95–100. https://pubmed.ncbi.nlm.nih.gov/19480351/.
  • Kaar SJ, Angelescu I, Marques TR, Howes OD. Pre-frontal parvalbumin interneurons in schizophrenia: a meta-analysis of post-mortem studies. J Neural Transm (Vienna). 2019;126:1637–51. doi:10.1007/s00702-019-02080-2.
  • Matsuura A, Ishima T, Fujita Y, Iwayama Y, Hasegawa S, Kawahara-Miki R, et al. Dietary glucoraphanin prevents the onset of psychosis in the adult offspring after maternal immune activation. Sci Rep. 2018;8(1):2158. doi:10.1038/s41598-018-20538-3.
  • Fahey JW, Holtzclaw WD, Wehage SL, Wade KL, Stephenson KK, Talalay P. Sulforaphane bioavailability from glucoraphanin-rich broccoli: control by active endogenous myrosinase. PLoS One. 2015;10(11):e0140963. doi:10.1371/journal.pone.0140963.
  • Hei G, Smith RC, Li R, Ou J, Song X, Zheng Y, et al. Sulforaphane effects on cognition and symptoms in first and early episode schizophrenia: a randomized double-blind trial. Schizophrenia Bull Open. 2022;3(1):sgac024. doi:10.1093/schizbullopen/sgac024.
  • Chang C-W, Lee J-J, Lu K-T. The effects of adding heartwood extractives from Acacia confusa on the lightfastness improvement of refined oriental lacquer. Polymers (Basel). 2021;13(23):4085. doi:10.3390/polym13234085.
  • Lin H-Y, Chang T-C, Chang S-T. A review of antioxidant and pharmacological properties of phenolic compounds in Acacia confusa. J Tradit Complement Med. 2018;8(4):443–50. doi:10.1016/j.jtcme.2018.05.002.
  • Abrahams S, Haylett WL, Johnson G, Carr JA, Bardien S. Antioxidant effects of curcumin in models of neurodegeneration, aging, oxidative and nitrosative stress: a review. Neuroscience. 2019;406:1–21. doi:10.1016/j.neuroscience.2019.02.020.
  • Zheng D, Huang C, Huang H, Zhao Y, Khan MRU, Zhao H, Huang L. Antibacterial mechanism of curcumin: a review. Chem Biodivers. 2020;17(8):e2000171. doi:10.1002/cbdv.202000171.
  • Moghaddam AH, Maboudi K, Bavaghar B, Sangdehi SRM, Zare M. Neuroprotective effects of curcumin-loaded nanophytosome on ketamine-induced schizophrenia-like behaviors and oxidative damage in male mice. Neurosci Lett. 2021;765:136249. doi:10.1016/j.neulet.2021.136249.
  • Thangaleela S, Sivamaruthi BS, Kesika P, Bharathi M, Kunaviktikul W, Klunklin A, et al. Essential oils, phytoncides, aromachology, and aromatherapy—a review. Appl Sci. 2022;12(9):4495. doi:10.3390/app12094495.
  • Li H, Xia N, Hasselwander S, Diaber A. Resveratrol and vascular function. Int J Mol Sci. 2019;20(9):2155. doi:10.3390/ijms20092155.
  • Shayganfard M. Molecular and biological functions of resveratrol in psychiatric disorders: a review of recent evidence. Cell Biosci. 2020;10:1–14. doi:10.1186/s13578-020-00491-3.
  • Niu J, Cao Y, Ji Y. Resveratrol, a SIRT1 activator, ameliorates MK-801-induced cognitive and motor impairments in a neonatal rat model of schizophrenia. Front Psychiatry. 2020;11:716. doi:10.3389/fpsyt.2020.00716.
  • Akosman MS, Türkmen R, Demirel HH. Investigation of the protective effect of resveratrol in an MK-801-induced mouse model of schizophrenia. Environ Sci Pollut Res Int. 2021;28(46):65872–84. doi:10.1007/s11356-021-15664-x.
  • Zahrani NAA, El-Shishtawy RM, Asiri AM. Recent developments of gallic acid derivatives and their hybrids in medicinal chemistry: a review. Eur J Med Chem. 2020;204:112609. doi:10.1016/j.ejmech.2020.112609.
  • Mahindrakar KV, Rathod VK. Ultrasonic assisted aqueous extraction of catechin and gallic acid from Syzygium cumini seed kernel and evaluation of total phenolic, flavonoid contents and antioxidant activity. Antioxidants. 2020;149:107841. doi:10.3390/antiox9040352.
  • Schimites P, Segat H, Teixeira L, Martins LR, Mangini LT, Baccin PS, et al. Gallic acid prevents ketamine-induced oxidative damages in brain regions and liver of rats. Neurosci Lett. 2020;714:134560. doi:10.1016/j.neulet.2019.134560.
  • Fidan H, Stankov S, Petkova N, Petkova Z, Iliev A, Stoyanova M, et al. Evaluation of chemical composition, antioxidant potential and functional properties of carob (Ceratonia siliqua L.) seeds. J Food Sci Technol. 2020;57:2404–13. doi:10.1007/s13197-020-04274-z.
  • Kyriacou MC, Antoniou C, Rouphael Y, Graziani G, Kyratzis A. Mapping the primary and secondary metabolomes of carob (Ceratonia siliqua L.) fruit and its postharvest antioxidant potential at critical stages of ripening. Antioxidants. 2021;10(1):57. doi:10.3390/antiox10010057.
  • Lakkab I, Ouakil A, El Hajaji H, Lachkar N, Lefter R, Ciobica A, et al. Carob seed peels effect on cognitive impairment and oxidative stress status in methionine-induced mice models of schizophrenia. Brain Sci. 2022;12(12):1660. doi:10.3390/brainsci12121660.
  • Lim YP, Pang SF, Yusoff MM, Abdul Mudalip SK, Gimbun J. Correlation between the extraction yield of mangiferin to the antioxidant activity, total phenolic and total flavonoid content of Phaleria macrocarpa fruits. J Appl Res Med. 2019;14:100224. doi:10.1016/j.jarmap.2019.100224.
  • Al-Saeedi FJ. Mangiferin protect oxidative stress against deoxynivalenol induced damages through Nrf2 signalling pathways in endothelial cells. Clin Exp Pharmacol Physiol. 2021;48(3):389–400. doi:10.1111/1440-1681.13432.
  • Rao VS, Carvalho AC, Trevisan MTS, Andrade GM, Nobre HV, Moraes MO, et al. Mangiferin ameliorates 6-hydroxydopamineinduced cytotoxicity and oxidative stress in ketamine model of schizophrenia. Pharmacol Rep. 2012;64(4):848–56. doi:10.1016/s1734-1140(12)70879-4.
  • Lum PT, Sekar M, Gan SH, Pandy V, Bonam SR. Protective effect of mangiferin on memory impairment: a systematic review. Saudi J Biol Sci. 2021;28(1):917–27. doi:10.1016/j.sjbs.2020.11.037.
  • Rahman M. Plant diversity in Hazarikhil Wildlife Sanctuary of Chittagong and its conservation management. Environ Sci. 2018;3(2):43–56. doi:10.3329/JBCBM.V3I2.36027.
  • Bristy TA, Barua N, Montakim Tareq A, Sakib SA, Etu ST, Chowdhury KH, et al. Deciphering the pharmacological properties of methanol extract of Psychotria calocarpa leaves by in vivo, in vitro and in silico approaches. Pharmaceuticals. 2020;13(8):183. doi:10.3390/ph13080183.
  • Fajemiroye JO, da Silva DM, de Oliveira DR, Costa EA. Treatment of anxiety and depression: medicinal plants in retrospect. Fundam Clin Pharmacol. 2016;30(3):198–215. doi:10.1111/fcp.12186.
  • Koval’Skii I, Krasnyuk I, Krasnyuk I, Nikulina OI, Belyatskaya AV, Kharitonov YY, et al. Mechanisms of rutin pharmacological action. Pharm Chem J. 2014;48:73–6. doi:10.1007/s11094-014-1050-6.
  • Mottaghi S, Abbaszadeh H. The anticarcinogenic and anticancer effects of the dietary flavonoid, morin: current status, challenges, and future perspectives. Phytother Res. 2021;35(12):6843–61. doi:10.1002/ptr.7270.
  • Issac PK, Guru A, Velayutham M, Pachaiappan R, Arasu MV, Al-Dhabi NA, et al. Oxidative stress induced antioxidant and neurotoxicity demonstrated in vivo zebrafish embryo or larval model and their normalization due to morin showing therapeutic implications. Life Sci. 2021;283:119864. doi:10.1016/j.lfs.2021.119864.
  • Singh MP, Sharma C, Kang SC. Morin hydrate attenuates adenine-induced renal fibrosis via targeting cathepsin D signaling. Int Immunopharmacol. 2021;90:107234. doi:10.1016/j.intimp.2020.107234.
  • Singh A, Kukreti R, Saso L, Kukreti S. Oxidative stress: a key modulator in neurodegenerative diseases. Molecules. 2019;24(8):1583. doi:10.3390/molecules24081583.
  • Memarzia A, Khazdair MR, Behrouz S, Gholamnezhad Z, Jafarnezhad M, Saadat S, Boskabady MH. Experimental and clinical reports on anti-inflammatory, antioxidant, and immunomodulatory effects of Curcuma longa and curcumin, an updated and comprehensive review. Biofactors. 2021;47(3):311–50. doi:10.1002/biof.1716.
  • Tomeh MA, Hadianamrei R, Zhao X. A review of curcumin and its derivatives as anticancer agents. Int J Mol Sci. 2019;20(5):1033. doi:10.3390/ijms20051033.
  • Cheng CK, Luo JY, Lau CW, Chen Z, Tian XY, Huang Y. Pharmacological basis and new insights of resveratrol action in the cardiovascular system. Br J Pharmacol. 2020;177(6):1258–77. doi:10.1111/bph.14801.
  • Baba SP, Bhatnagar A. Role of thiols in oxidative stress. Curr Opin Toxicol. 2018;7:133–9. doi:10.1016/j.cotox.2018.03.005.
  • Ong WY, Farooqui T, Ho CFY, Farooqui AA. Use of phytochemicals against neuroinflammation. Neuroprot Effects Phytochem Neurol Disorders. 2017: 1–41. doi:10.1002/9781119155195.ch1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.