Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Latest Articles
52
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Early-life malnutrition role in memory, emotional behavior and motor impairments in early brain lesions with potential for neurodevelopmental disorders: a systematic review with meta-analysis

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Kelly SA, Panhuis TM, Stoehr AM. Phenotypic plasticity: molecular mechanisms and adaptive significance. In: Compr physiol [Internet]. Vol. 2. [place unknown]: Wiley; 2012. p. 1417–39. doi:10.1002/cphy.c110008.
  • West-Eberhard MJ. Developmental plasticity and the origin of species differences. Proc Natl Acad Sci [Internet]. 2005;102(suppl_1):6543–9. doi:10.1073/pnas.0501844102.
  • Rice D, Barone S. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect [Internet]. 2000;108(suppl 3):511–33. doi:10.1289/ehp.00108s3511.
  • Sommer RJ. Plasticidade fenotípica : da teoria e da genética à Desafios Atuais e Futuros. Genetics. 2020;215:1–13.
  • Delcour M, Russier M, Castets F, Turle-Lorenzo N, Canu M-H, Cayetanot F, et al. Early movement restriction leads to maladaptive plasticity in the sensorimotor cortex and to movement disorders. Sci Rep [Internet]. 2018;8(1):16328. doi:10.1038/s41598-018-34312-y.
  • Ghalambor CK, McKay JK, CarrolL SP, RD N. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol [Internet]. 2007;21(3):394–407. doi:10.1111/j.1365-2435.2007.01283.x.
  • Monk C, Fernández CR. Neuroscience advances and the developmental origins of health and disease research. JAMA Netw Open [Internet]. 2022;5(4):e229251. doi:10.1001/jamanetworkopen.2022.9251.
  • Suzuki K. The developing world of DOHaD. J Dev Orig Health Dis [Internet]. 2018;9(3):266–9. doi:10.1017/S2040174417000691.
  • Toscano AE, Amorim MAF, de Carvalho Filho EV, da Silva Aragão R, Cabral-Filho JE, de Moraes SRA, Manhaes-de-Castro R. Do malnutrition and fluoxetine neonatal treatment program alterations in heart morphology? Life Sci [Internet]. 2008;82(21–22):1131–6. doi:10.1016/j.lfs.2008.03.013.
  • Bax M, Goldstein M, Rosenbaum P, Leviton A, Paneth N, Dan B, et al. Proposed definition and classification of cerebral palsy, April 2005. Dev Med Child Neurol [Internet]. 2005;47(8):571–6. doi:10.1017/S001216220500112X.
  • Fragopoulou AF, Qian Y, Heijtz RD, Forssberg H. Can neonatal systemic inflammation and hypoxia yield a cerebral palsy-like phenotype in periadolescent mice? Mol Neurobiol [Internet]. 2019;56(10):6883–900. doi:10.1007/s12035-019-1548-8.
  • McIntyre S, Taitz D, Keogh J, Goldsmith S, Badawi N, Blair E. A systematic review of risk factors for cerebral palsy in children born at term in developed countries. Dev Med Child Neurol [Internet]. 2013;55(6):499–508. doi:10.1111/dmcn.12017.
  • da Conceição Pereira S, Manhães-de-Castro R, Visco DB, de Albuquerque GL, da Silva Calado CMS, da Silva Souza V, Toscano AE. Locomotion is impacted differently according to the perinatal brain injury model: meta-analysis of preclinical studies with implications for cerebral palsy. J Neurosci Methods [Internet]. 2021;360(March):109250. doi:10.1016/j.jneumeth.2021.109250.
  • Gouveia HJCB, Manhães-de-Castro R, Costa-de-Santana BJR, Vasconcelos EEM, Silva ER, Roque A, et al. Creatine supplementation increases postnatal growth and strength and prevents overexpression of pro-inflammatory interleukin 6 in the hippocampus in an experimental model of cerebral palsy. Nutr Neurosci [Internet]. 2023;27(May):1–13. doi:10.1080/1028415X.2023.2206688.
  • Pereira SdC, Benoit B, de Aguiar Junior FCA, Chanon S, Vieille-Marchiset A, Pesenti S, et al. Fibroblast growth factor 19 as a countermeasure to muscle and locomotion dysfunctions in experimental cerebral palsy. J Cachexia Sarcopenia Muscle [Internet]. 2021;12(6):2122–33. doi:10.1002/jcsm.12819.
  • Visco DB, Manhães de Castro R, da Silva MM, Costa de Santana BJR, Bezerra Gouveia HJC, de Moura Ferraz MLR, et al. Neonatal kaempferol exposure attenuates gait and strength deficits and prevents altered muscle phenotype in a rat model of cerebral palsy. Int J Dev Neurosci [Internet]. 2023;83(1):80–97. doi:10.1002/jdn.10239.
  • Yeargin-Allsopp M, Van Naarden Braun K, Doernberg NS, Benedict RE, Kirby RS, Durkin MS. Prevalence of cerebral palsy in 8-year-Old children in three areas of the United States in 2002: a multisite collaboration. Pediatrics [Internet]. 2008;121(3):547–54. doi:10.1542/peds.2007-1270.
  • Aucott SW, Watterberg KL, Shaffer ML, Donohue PK. Early cortisol values and long-term outcomes in extremely low birth weight infants. J Perinatol [Internet]. 2010;30(7):484–8. doi:10.1038/jp.2009.191.
  • Van Rooijen M, Verhoeven L, Steenbergen B. Working memory and fine motor skills predict early numeracy performance of children with cerebral palsy. Child Neuropsychol [Internet]. 2016;22(6):735–47. doi:10.1080/09297049.2015.1046426.
  • Hoffman RM, Trevarrow MP, Bergwell HR, Embury CM, Heinrichs-Graham E, Wilson TW, Kurz MJ. Cortical oscillations that underlie working memory are altered in adults with cerebral palsy. Clin Neurophysiol [Internet]. 2021;132(4):938–45. doi:10.1016/j.clinph.2020.12.029.
  • Stadskleiv K, Jahnsen R, Andersen GL, von Tetzchner S. Neuropsychological profiles of children with cerebral palsy. Dev Neurorehabil [Internet]. 2018;21(2):108–20. doi:10.1080/17518423.2017.1282054.
  • Visco DB, Manhães-de-Castro R, da Silva MM, Costa-de-Santana BJR, Pereira dos Santos Junior J, Saavedra LM, et al. Neonatal kaempferol exposure attenuates impact of cerebral palsy model on neuromotor development, cell proliferation, microglia activation, and antioxidant enzyme expression in the hippocampus of rats. Nutr Neurosci [Internet]. 2022: 1–22. doi:10.1080/1028415X.2022.2156034.
  • Fanselow MS, Dong H-W. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron [Internet]. 2010;65(1):7–19. doi:10.1016/j.neuron.2009.11.031.
  • Berger HR, Nyman AKG, Morken TS, Widerøe M. Transient effect of melatonin treatment after neonatal hypoxic-ischemic brain injury in rats.baud O, editor. PLoS One [Internet]. 2019;14(12):e0225788. doi:10.1371/journal.pone.0225788.
  • Calado CdS, Manhães-de-Castro R, da Conceição Pereira S, da Silva Souza V, Barbosa LNF, dos Santos Junior OH, et al. Resveratrol reduces neuroinflammation and hippocampal microglia activation and protects against impairment of memory and anxiety-like behavior in experimental cerebral palsy. Mol Neurobiol [Internet]. 2023: 0123456789. doi:10.1007/s12035-023-03772-3.
  • Visco DB, Toscano AE, Juárez PAR, Gouveia HJCB, Guzman-Quevedo O, Torner L, Manhães-de-Castro R. A systematic review of neurogenesis in animal models of early brain damage: implications for cerebral palsy. Exp Neurol [Internet]. 2021;340(October 2020):113643. doi:10.1016/j.expneurol.2021.113643.
  • Bekinschtein P, Cammarota M, Igaz LM, Bevilaqua LRM, Izquierdo I, Medina JH. Persistence of long-term memory storage requires a late protein synthesis- and BDNF- dependent phase in the hippocampus. Neuron [Internet]. 2007;53(2):261–77. doi:10.1016/j.neuron.2006.11.025.
  • Kandel ER. The molecular biology of memory storage: A dialogue between genes and synapses. Science (80-) [Internet]. 2001;294(5544):1030–8. [cited 2023 Jan 18]. doi:10.1126/science.1067020.
  • Fesser EA, Gianatiempo O, Berardino BG, Ferroni NM, Cambiasso M, Fontana VA, et al. Limited contextual memory and transcriptional dysregulation in the medial prefrontal cortex of mice exposed to early protein malnutrition are intergenerationally transmitted. J Psychiatr Res [Internet]. 2021;139(May):139–49. doi:10.1016/j.jpsychires.2021.05.041.
  • Potter M, Rosenkrantz T, Fitch RH. Behavioral and neuroanatomical outcomes in a rat model of preterm hypoxic-ischemic brain injury: effects of caffeine and hypothermia. Int J Dev Neurosci [Internet]. 2018;70(1):46–55. doi:10.1016/j.ijdevneu.2018.02.001.
  • Presti AL, Kishkurno SV, Slinko SK, Randis TM, Ratner VI, Polin RA, Ten VS. Reoxygenation with 100% oxygen versus room Air: late neuroanatomical and neurofunctional outcome in neonatal mice with hypoxic-ischemic brain injury. Pediatr Res [Internet]. 2006;60(1):55–9. doi:10.1203/01.pdr.0000223766.98760.88.
  • de Souza AS, Fernandes FS, Tavares do Carmo M das G. Effects of maternal malnutrition and postnatal nutritional rehabilitation on brain fatty acids, learning, and memory. Nutr Rev [Internet]. 2011;69(3):132–44. doi:10.1111/j.1753-4887.2011.00374.x.
  • Trivić I, Hojsak I. Evaluation and treatment of malnutrition and associated gastrointestinal complications in children with cerebral palsy. Pediatr Gastroenterol Hepatol Nutr [Internet]. 2019;22(2):122. doi:10.5223/pghn.2019.22.2.122.
  • Cook AM, Peppard A, Magnuson B. Nutrition considerations in traumatic brain injury. Nutr Clin Pract [Internet]. 2008;23(6):608–20. doi:10.1177/0884533608326060.
  • Romano C, Dipasquale V, Gottrand F, Sullivan PB. Gastrointestinal and nutritional issues in children with neurological disability. Dev Med Child Neurol [Internet]. 2018;60(9):892–6. doi:10.1111/dmcn.13921.
  • Benfer KA, Weir KA, Bell KL, Ware RS, Davies PSW, Boyd RN. Oropharyngeal dysphagia and cerebral palsy. Pediatrics [Internet]. 2017;140(6); doi:10.1542/peds.2017-0731.
  • Cavalcanti CCL, Da Silva Aragão R, Cadena-Burbano EV, Oliveira TR dos P, Silva JM, Benjamim RdA, et al. High-caloric or isocaloric maternal high-fat diets differently affect young-adult offspring behavior in anxiety-related tests and offspring sensitivity to acute fluoxetine. Behav Brain Res [Internet]. 2021;403(January):113141. doi:10.1016/j.bbr.2021.113141.
  • Rethlefsen ML, Kirtley S, Waffenschmidt S, Ayala AP, Moher D, Page MJ, et al. PRISMA-S: an extension to the PRISMA statement for reporting literature searches in systematic reviews. Syst Rev [Internet]. 2021;10(1):39. doi:10.1186/s13643-020-01542-z.
  • Hooijmans Carlijn R, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE's risk of bias tool for animal studies. BMC Med Res Methodol [Internet]. 2014;14(1):43. doi:10.1186/1471-2288-14-43.
  • Hooijmans Carlijn R, IntHout J, Ritskes-Hoitinga M, Rovers MM. 2014. Meta-Analyses of Animal Studies: An Introduction of a Valuable Instrument to Further Improve Healthcare. ILAR J [Internet]. 55(3):418–426. doi:10.1093/ilar/ilu042.
  • Alboghobeish S, Pashmforosh M, Zeidooni L, Samimi A, Rezaei M. High fat diet deteriorates the memory impairment induced by arsenic in mice: a sub chronic in vivo study. Metab Brain Dis. 2019;34(6):1595–606. doi:10.1007/s11011-019-00467-4.
  • Arvanitidis AP, Corbett D, Colbourne F. A high fat diet does not exacerbate CA1 injury and cognitive deficits following global ischemia in rats. Brain Res [Internet]. 2009a;1252:192–200. doi:10.1016/j.brainres.2008.11.058.
  • Lacerda DC, Ferraz-Pereira KN, Visco DB, Pontes PB, Chaves WF, Guzman-Quevedo O, et al. Perinatal undernutrition associated to experimental model of cerebral palsy increases adverse effects on chewing in young rats. Physiol Behav [Internet]. 2017;173(October):69–78. doi:10.1016/j.physbeh.2017.01.043.
  • Mairesse J, Zinni M, Pansiot J, Hassan-Abdi R, Demene C, Colella M, et al. Oxytocin receptor agonist reduces perinatal brain damage by targeting microglia. Glia [Internet]. 2019;67(2):345–59. doi:10.1002/glia.23546.
  • Mychasiuk R, Hehar H, Ma I, Esser MJ. Dietary intake alters behavioral recovery and gene expression profiles in the brain of juvenile rats that have experienced a concussion. Front Behav Neurosci [Internet]. 2015;9(FEB):1–17. doi:10.3389/fnbeh.2015.00017.
  • Rahman MF, Yuksel CB, McGowan PO. Combined exposure to maternal high-fat diet and neonatal lipopolysaccharide disrupts stress-related signaling but normalizes spatial memory in juvenile rats. Brain Behav Immun [Internet]. 2022;102(March):299–311. doi:10.1016/j.bbi.2022.03.003.
  • Sanches EF, Arteni NS, Spindler C, Moysés F, Siqueira IR, Perry ML, Netto CA. Effects of pre- and postnatal protein malnutrition in hypoxic–ischemic rats. Brain Res [Internet]. 2012;1438:85–92. doi:10.1016/j.brainres.2011.12.024.
  • Silva Kd, Pereira SdC, Portovedo M, Milanski M, Galindo LCM, Guzmán-Quevedo O, et al. Effects of maternal low-protein diet on parameters of locomotor activity in a rat model of cerebral palsy. Int J Dev Neurosci [Internet]. 2016;52(1):38–45. doi:10.1016/j.ijdevneu.2016.05.002.
  • Teo JD, Morris MJ, Jones NM. Maternal obesity increases inflammation and exacerbates damage following neonatal hypoxic-ischaemic brain injury in rats. Brain Behav Immun [Internet]. 2017;63:186–96. doi:10.1016/j.bbi.2016.10.010.
  • Vargas-Rodríguez I, Reyes-Castro LA, Pacheco-López G, Lomas-Soria C, Zambrano E, Díaz-Ruíz A, Diaz-Cintra S. Postnatal exposure to lipopolysaccharide combined with high-fat diet consumption induces immune tolerance without prevention in spatial working memory impairment. Behav Brain Res [Internet]. 2022;423:113776. [cited 2023 Jun 25]. doi:10.1016/j.bbr.2022.113776.
  • Ahn Y, Narous M, Tobias R, Rho JM, Mychasiuk R. The ketogenic diet modifies social and metabolic alterations identified in the prenatal valproic acid model of autism spectrum disorder. Dev Neurosci. 2014;36(5):371–80. doi:10.1159/000362645.
  • Mychasiuk R, Hehar H, van Waes L, Esser MJ. Diet, age, and prior injury status differentially alter behavioral outcomes following concussion in rats. Neurobiol Dis [Internet]. 2015;73:1–11. doi:10.1016/j.nbd.2014.09.003.
  • Sengupta P. The laboratory rat: relating its age with human’s. Int J Prev Med. 2013;4(6):624–30.
  • Fox WM. Reflex-ontogeny and behavioural development of the mouse. Anim Behav. 1965;13(2–3). doi:10.1016/0003-3472(65)90041-2.
  • Gouveia HJCB, Manhães-de-Castro R, Costa-de-Santana BJR, Mendonça CR, Albuquerque G, Visco DB, et al. Maternal exposure to busulfan reduces the cell number in the somatosensory cortex associated with delayed somatic and reflex maturation in neonatal rats. J Chem Neuroanat [Internet]. 2020;103:101710. doi:10.1016/j.jchemneu.2019.101710.
  • Coq J-O, Kochmann M, Lacerda DC, Khalki H, Delcour M, Toscano AE, et al. From cerebral palsy to developmental coordination disorder: development of preclinical rat models corresponding to recent epidemiological changes. Ann Phys Rehabil Med [Internet]. 2020;63(5):422–30. doi:10.1016/j.rehab.2019.10.002.
  • Coq J-O, Strata F, Russier M, Safadi FF, Merzenich MM, Byl NN, Barbe MF. Impact of neonatal asphyxia and hind limb immobilization on musculoskeletal tissues and S1 map organization: implications for cerebral palsy. Exp Neurol [Internet]. 2008;210(1):95–108. doi:10.1016/j.expneurol.2007.10.006.
  • Maisterrena A, de Chaumont F, Longueville J-E, Balado E, Ey E, Jaber M. Female mice prenatally exposed to valproic acid exhibit complex and prolonged social behavior deficits. Prog Neuro-Psychopharmacology Biol Psychiatry [Internet]. 2024;131(January):110948. doi:10.1016/j.pnpbp.2024.110948.
  • Margedari P, Goudarzi I, Sepehri H. The protective role of prenatal administration of ascorbic acid on autistic-like behavior in a rat model of autism. IBRO Neurosci Reports [Internet]. 2024;16(October 2023):78–85. doi:10.1016/j.ibneur.2023.11.002.
  • Orsini CA, Setlow B. Sex differences in animal models of decision making. J Neurosci Res [Internet]. 2017;95(1–2):260–9. doi:10.1002/jnr.23810.
  • Zhang X, Mei D, Li Y, You M, Wang D, Yao D, et al. Arsenic exposure via drinking water during pregnancy and lactation induces autism-like behaviors in male offspring mice. Chemosphere [Internet]. 2022;290(77):133338. doi:10.1016/j.chemosphere.2021.133338.
  • Zhu Y, Yang Q, Gu J, Chen Z, Jing N, Jin T, et al. Environmental standard limit concentration” arsenic exposure is associated with anxiety, depression, and autism-like changes in early-life stage zebrafish. J Hazard Mater [Internet]. 2024;469(November 2023):133953. doi:10.1016/j.jhazmat.2024.133953.
  • Ma X, Yang L, Ding B, Lu S, Ni B, Chen Y, et al. Anthocyanins from blueberry ameliorated arsenic-induced memory impairment, oxidative stress, and mitochondrial-biosynthesis imbalance in rat hippocampal neurons. Cell Signal [Internet]. 2024;119(April):111177. doi:10.1016/j.cellsig.2024.111177.
  • Calado CdS, Manhães-de-Castro R, Pereira SdC, da Silva Souza V, Visco DB, de Silveira BS, et al. Therapeutic advances for treating memory impairments in perinatal brain injuries with implications for cerebral palsy: a systematic review and meta-analysis of preclinical studies. Exp Neurol [Internet]. 2023;365(April):114411. doi:10.1016/j.expneurol.2023.114411.
  • Than UTT, Nguyen LT, Nguyen PH, Nguyen XH, Trinh DP, Hoang DH, et al. Inflammatory mediators drive neuroinflammation in autism spectrum disorder and cerebral palsy. Sci Rep [Internet]. 2023;13(1):1–11. https://doi.org/10.1038/s41598-023-49902-8.
  • Delcour M, Russier M, Amin M, Baud O, Paban V, Barbe MF, Coq J-O. Impact of prenatal ischemia on behavior, cognitive abilities and neuroanatomy in adult rats with white matter damage. Behav Brain Res [Internet]. 2012;232(1):233–44. doi:10.1016/j.bbr.2012.03.029.
  • da Silva Souza V, Manhães-de-Castro R, Pereira SdC, Calado CdS, Souza de Silveira B, Araújo EdS, et al. Neonatal treatment with resveratrol decreases postural and strength impairments and improves mitochondrial function in the somatosensory cortex rats submitted to cerebral palsy. Neurochem Int [Internet]. 2023;168(June):105568. doi:10.1016/j.neuint.2023.105568.
  • Costa-de-Santana BJR, Manhães-de-Castro R, José Cavalcanti Bezerra Gouveia H, Roberto Silva E, Antônio da Silva Araújo M, Cabral Lacerda D, et al. Motor deficits are associated with increased glial cell activation in the hypothalamus and cerebellum of young rats subjected to cerebral palsy. Brain Res [Internet]. 2023;1814:148447. doi:10.1016/j.brainres.2023.148447.
  • Roseboom TJ, Painter RC, van Abeelen AFM, Veenendaal MVE, de Rooij SR. Hungry in the womb: what are the consequences? Lessons from the Dutch famine. Maturitas [Internet]. 2011;70(2):141–5. doi:10.1016/j.maturitas.2011.06.017.
  • Bari MW, Ishiyama S, Matsumoto S, Mochizuki K, Kishigami S. From lessons on the long-term effects of the preimplantation environment on later health to a “modified ART-DOHaD” animal model. Reprod Med Biol [Internet]. 2022;21(1):1–8. doi:10.1002/rmb2.12469.
  • MacBeth A, Christie H, Golds L, Morales F, Raouna A, Sawrikar V, Gillespie-Smith K. Thinking about the next generation: The case for a mentalization-informed approach to perinatal and intergenerational mental health. Psychol Psychother Theory, Res Pract [Internet]. 2023;(June):1–15. doi:10.1111/papt.12483.
  • Agni MB, Hegde PS, Rai P, Sadananda M, DG KM. Astaxanthin and DHA supplementation modulates the maternal undernutrition-induced impairment of cognitive behavior and synaptic plasticity in adult life of offspring’s -exploring the molecular mechanism. Mol Neurobiol [Internet]. 2024: 0123456789. doi:10.1007/s12035-024-04147-y.
  • Burton GJ, Jauniaux E. What is the placenta? Am J Obstet Gynecol [Internet]. 2015;213(4):S6.e1–S6.e4. doi:10.1016/j.ajog.2015.07.050.
  • Lindsay KL, Buss C, Wadhwa PD, Entringer S. The interplay between nutrition and stress in pregnancy: implications for fetal programming of brain development. Biol Psychiatry [Internet]. 2019;85(2):135–49. doi:10.1016/j.biopsych.2018.06.021.
  • Wells JCK. Understanding developmental plasticity as adaptation requires an inter-generational perspective. Evol Med Public Heal. 2017;2017(1):185–7. doi:10.1093/emph/eox023.
  • Wells JCK. Developmental plasticity as adaptation: adjusting to the external environment under the imprint of maternal capital. Philos Trans R Soc B Biol Sci. 2019;374(1770). doi:10.1098/rstb.2018.0122.
  • Morgane PJ, Mokler DJ, Galler JR. Effects of prenatal protein malnutrition on the hippocampal formation. Neurosci Biobehav Rev [Internet]. 2002;26(4):471–83. doi:10.1016/S0149-7634(02)00012-X.
  • Calderon F, Kim HY. Docosahexaenoic acid promotes neurite growth in hippocampal neurons. J Neurochem. 2004;90(4):979–88. doi:10.1111/j.1471-4159.2004.02520.x.
  • Carver JD, Benford VJ, Han B, Cantor AB. The relationship between age and the fatty acid composition of cerebral cortex and erythrocytes in human subjects. Brain Res Bull. 2001;56(2):79–85. doi:10.1016/S0361-9230(01)00551-2.
  • Green P, Glozman S, Kamensky B, Yavin E. Developmental changes in rat brain membrane lipids and fatty acids: the preferential prenatal accumulation of docosahexaenoic acid. J Lipid Res [Internet]. 1999;40(5):960–6. https://doi.org/10.1016/s0022-2275(20)32132-5.
  • Bekinschtein P, Cammarota M, Izquierdo I, Medina JH. Reviews: BDNF and memory formation and storage. Neurosci [Internet]. 2008;14(2):147–56. doi:10.1177/1073858407305850.
  • Bevilaqua LRM, Cammarota M, Paratcha G, De Stein ML, Izquierdo I, Medina JH. Experience-dependent increase in cAMP-responsive element binding protein in synaptic and nonsynaptic mitochondria of the rat hippocampus. Eur J Neurosci [Internet]. 1999;11(10):3753–6. doi:10.1046/j.1460-9568.1999.00830.x.
  • Dermeval D, Vilela J, Bittencourt II, Castro J, Isotani S, Brito P, Silva A. Applications of ontologies in requirements engineering: a systematic review of the literature. Requir Eng [Internet]. 2016;21(4):405–37. doi:10.1007/s00766-015-0222-6.
  • Moser M-B, Moser EI. Distributed encoding and retrieval of spatial memory in the hippocampus. J Neurosci [Internet]. 1998;18(18):7535–42. doi:10.1523/JNEUROSCI.18-18-07535.1998.
  • Strange BA, Witter MP, Lein ES, Moser EI. Functional organization of the hippocampal longitudinal axis. Nat Rev Neurosci [Internet]. 2014;15(10):655–69. doi:10.1038/nrn3785.
  • Zhao Y, Tang H, Peng T, Li J, Liu L, Fu C, et al. Relationship between nutritional status and severity of cerebral palsy: a multicentre cross-sectional study. J Rehabil Med [Internet]. 2023;55:jrm00367. doi:10.2340/jrm.v55.4395.
  • Eichenbaum H. Prefrontal–hippocampal interactions in episodic memory. Nat Rev Neurosci [Internet]. 2017;18(9):547–58. doi:10.1038/nrn.2017.74.
  • Eichenbaum H, Fagan A, Cohen NJ. Normal olfactory discrimination learning Set and facilitation of reversal learning after medial-temporal damage in rats : implications for an account of preserved learning abilities in amnesia. J Neurosci. 1986;6(July):1876–84.
  • Eichenbaum H, Fagan A, Mathews P, Cohen NJ. Hippocampal system dysfunction and odor discrimination learning in rats: impairment of facilitation depending on representational demands. Behav Neurosci [Internet]. 1988;102(3):331–9. doi:10.1037/0735-7044.102.3.331.
  • Xue G. The neural representations underlying human episodic memory. Trends Cogn Sci [Internet]. 2018;22(6):544–61. doi:10.1016/j.tics.2018.03.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.