2,984
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Towards optimised decisions for resource and carbon-efficient structural design

&
Pages 1-31 | Received 30 Nov 2022, Accepted 25 Mar 2023, Published online: 17 Apr 2023

References

  • Acree Guggemos, A., and A. Horvath. 2005. “Comparison of Environmental Effects of Steel- and Concrete-Framed Buildings.” Journal of Infrastructure Systems 11 (2): 93–101. https://doi.org/10.1061/(ASCE)1076-0342(2005)11:2(93).
  • Adhikari, P., H. Mahmoud, A. Xie, K. Simonen, and B. Ellingwood. 2020. “Life-Cycle Cost and Carbon Footprint Analysis for Light-Framed Residential Buildings Subjected to Tornado Hazard.” Journal of Building Engineering 32: 101657. https://www.sciencedirect.com/science/article/pii/S2352710220308482.
  • Andersen, C. E., K. Kanafani, R. Kjær Zimmermann, F. Nygaard Rasmussen, and H. Birgisdóttir. 2020. “Comparison of GHG Emissions from Circular and Conventional Building Components.” Buildings and Cities 1 (1): 379–392. https://doi.org/10.5334/bc.55.
  • Andersen, C. E., F. N. Rasmussen, G. Habert, and H. Birgisdóttir. 2021. “Embodied GHG Emissions of Wooden Buildings–Challenges of Biogenic Carbon Accounting in Current LCA Methods.” Frontiers in Built Environment 7: 120. https://www.frontiersin.org/article/10.3389/fbuil.2021.729096.
  • Arehart, Jay H., Jim Hart, Francesco Pomponi, and Bernardino D'Amico. 2021. “Carbon Sequestration and Storage in the Built Environment.” Sustainable Production and Consumption 27: 1047–1063. https://www.sciencedirect.com/science/article/pii/S235255092100066X.
  • Aye, L., T. Ngo, R. H. Crawford, R. Gammampila, and P. Mendis. 2012. “Life Cycle Greenhouse Gas Emissions and Energy Analysis of Prefabricated Reusable Building Modules.” Energy and Buildings47: 159–168. https://www.sciencedirect.com/science/article/pii/S0378778811005950.
  • Barg, Steve, Forest Flager, and Martin Fischer. 2018. “An Analytical Method to Estimate the Total Installed Cost of Structural Steel Building Frames During Early Design.” Journal of Building Engineering 15: 41–50. https://www.sciencedirect.com/science/article/pii/S235271021730503X.
  • Bauforumstahl. 2021. “Kosten im Stahlbau 2021, Basisinformationen zur Kalkulation.”
  • Buchanan, A. H., and B. G. Honey. 1994. “Energy and Carbon Dioxide Implications of Building Construction.” Energy and Buildings 20 (3): 205–217. https://www.sciencedirect.com/science/article/pii/0378778894900248.
  • Bundesamt, DESTATIS. Statistisches. 2021. “Bautätigkeit und Wohnungen. Fachserie 5 / Reihe 1. Bautätigkeit.” https://www.destatis.de.
  • Bundesamt, DESTATIS. Statistisches. 2022. “Volkswirtschaftliche Gesamtrechnungen, Bruttoinlandsprodukt (BIP).” https://www.destatis.de/DE/Themen/Wirtschaft/Volkswirtschaftliche-Gesamtrechnungen-Inlandsprodukt/Tabellen/bip-bubbles.html.
  • Bundesregierung. 2022. Klimaschutzbericht 2022. Report. Bundesministerium für Wirtschaft und Klimaschutz.
  • Cabeza, L. F., L. Rincón, V. Vilariño, G. Pérez, and A. Castell. 2014. “Life Cycle Assessment (LCA) and Life Cycle Energy Analysis (LCEA) of Buildings and the Building Sector: A Review.” Renewable and Sustainable Energy Reviews 29: 394–416. https://www.sciencedirect.com/science/article/pii/S1364032113005777.
  • Calgaro, J. A., and H. Gulvanessian. 2001. “Management of Reliability and Risk in the Eurocode System.” In Safety, Risk and Reliability – Trends in Engineering: International Conference, Malta, 155–160. Zurich: International Association for Bridge and Structural Engineering (IABSE).
  • Camp, C. V., and F. Huq. 2013. “CO2 and Cost Optimization of Reinforced Concrete Frames Using a Big Bang-Big Crunch Algorithm.” Engineering Structures 48: 363–372. https://www.sciencedirect.com/science/article/pii/S0141029612004828.
  • CEN. 2002a. “EN1990. Eurocode – Basis of Structural Design.”
  • CEN. 2002b. “EN1991-1-1. Eurocode 1: Actions on Structures – Part 1-1: General Actions – Densities, Self-Weight, Imposed Loads for Buildings.”
  • CEN. 2005. “EN1993-1-1. Eurocode 3: Design of Steel Structures – Part 1-1: General Rules and Rules for Buildings.”
  • CEN. 2010. “EN15643-1:2010. Sustainability of Construction Works – Sustainability Assessment of Buildings – Part 1: General Framework.”
  • CEN. 2011. “EN15978:2011. Sustainability of Construction Works – Assessment of Environmental Performance of Buildings – Calculation Method.”
  • CEN. 2020. “prEN1990. Eurocode – Basis of Structural and Geotechnical Design.”
  • CEN. 2022. Draft JRC Report – Reliability Background of the Eurocodes – 2022-02-11. Report. CEN/TC 250/ SC10 N 5553.
  • Chaudhary, Tariq, and Awais Piracha. 2013. “Effective Contribution of Structural Engineers to Green Buildings and Sustainability.” Canadian Journal of Civil Engineering 40 (1): 97–100. doi:10.1139/cjce-2012-0154.
  • CIB. 1999. Agenda 21 on Sustainable Construction. Report. International Council for Research and Innovation in Building and Construction (CIB), Comission W81.
  • Clark, D. H. 2013. What Colour is Your Building? Measuring and Reducing the Energy and Carbon Footprint of Buildings: Information Paper 12 – Embodied Carbon Case Studies for Office Buildings. Positive Zero Pty Limited and Cundall Johnston and Partners LLP. https://www.positivezero.com.au/wciyb.
  • Collings, David. 2022. “The Carbon Footprint of Bridges.” Structural Engineering International 32 (4): 501–506. https://doi.org/10.1080/10168664.2021.1917326.
  • D'Amico, Bernardino, and Francesco Pomponi. 2018. “Accuracy and Reliability: A Computational Tool to Minimise Steel Mass and Carbon Emissions at Early-Stage Structural Design.” Energy and Buildings168: 236–250. https://www.sciencedirect.com/science/article/pii/S0378778817336198.
  • deQo. 2021. “Database of Embodied Quantity Outputs (deQo).” https://www.carbondeqo.com; accessed in 09/2021.
  • De Wolf, C., E. Hoxha, A. Hollberg, C. Fivet, and J. Ochsendorf. 2020. “Database of Embodied Quantity Outputs: Lowering Material Impacts Through Engineering.” Journal of Architectural Engineering 26 (3): 04020016. https://ascelibrary.org/doi/abs/10.1061/.
  • De Wolf, C., F. Yang, D. Cox, A. Charlson, A. S. Hattan, and J. Ochsendorf. 2016. “Material Quantities and Embodied Carbon Dioxide in Structures.” Proceedings of the Institution of Civil Engineers – Engineering Sustainability 169 (4): 150–161. doi:10.1680/ensu.15.00033.
  • Dimoudi, A., and C. Tompa. 2008. “Energy and Environmental Indicators Related to Construction of Office Buildings.” Resources, Conservation and Recycling 53 (1): 86–95. https://www.sciencedirect.com/science/article/pii/S0921344908001481.
  • Ding, Grace K. C. 2008. “Sustainable Construction – the Role of Environmental Assessment Tools.” Journal of Environmental Management86 (3): 451–464. https://www.sciencedirect.com/science/article/pii/S0301479706004270.
  • Dong, Yan, Simona Miraglia, Stefano Manzo, Stylianos Georgiadis, Hjalte Jomo Danielsen Sørup, Elena Boriani, Tine Hald, Sebastian Thöns, and Michael Z. Hauschild. 2018. “Environmental Sustainable Decision Making – the Need and Obstacles for Integration of LCA into Decision Analysis.” Environmental Science & Policy 87: 33–44. https://www.sciencedirect.com/science/article/pii/S1462901118302776.
  • Eaton, K. J., and A. Amato. 1998. “A Comparative Life Cycle Assessment of Steel and Concrete Framed Office Buildings.” Journal of Constructional Steel Research 46 (1-3): 286–287. doi:10.1016/S0143-974X(98)00074-1.
  • Eberhardt, Leonora Charlotte Malabi, Harpa Birgisdottir, and Morten Birkved. 2019. “Life Cycle Assessment of a Danish Office Building Designed for Disassembly.” Building Research and Information47 (6): 666–680. doi:10.1080/09613218.2018.1517458.
  • Eberhardt, Leonora Charlotte Malabi, Morten Birkved, and Harpa Birgisdottir. 2020. “Building Design and Construction Strategies for a Circular Economy.” Architectural Engineering and Design Management 18: 93–113. https://doi.org/10.1080/17452007.2020.1781588.
  • Eleftheriadis, S., P. Duffour, P. Greening, J. James, B. Stephenson, and D. Mumovic. 2018. “Investigating Relationships Between Cost and CO2 Emissions in Reinforced Concrete Structures Using a BIM-Based Design Optimisation Approach.” Energy and Buildings 166: 330–346. https://www.sciencedirect.com/science/article/pii/S0378778817320133.
  • Ellingwood, B. R., and J. Y. Lee. 2016. “Life Cycle Performance Goals for Civil Infrastructure: Intergenerational Risk-Informed Decisions.” Structure and Infrastructure Engineering 12 (7): 822–829. https://doi.org/10.1080/15732479.2015.1064966.
  • European Comission. 2021a. https://climate.ec.europa.eu/eu-action/eu-emissions-trading-system-eu-ets.
  • European Comission. 2021b. “Emissions Database for Global Atmospheric Research (EDGAR), Release EDGAR v6.0 (1970–2018).” https://edgar.jrc.ec.europa.eu.
  • Faber, M. H., and R. Rackwitz. 2004. “Sustainable Decision Making in Civil Engineering.” Structural Engineering International 14 (3): 237–242. https://doi.org/10.2749/101686604777963919.
  • Faber, M. H., and J. D. Sørensen. 2003. “Reliability-Based Code Calibration: The JCSS Approach.” In Applications of Statistics and Probability in Civil Engineering, edited by A. D. Kiureghian, M. Samer, and J. M. Pestana, Vol. 2, 927–935. Rotterdam: Millpress.
  • Feria, Margarida, and Miguel Amado. 2019. “Architectural Design: Sustainability in the Decision-Making Process.” Buildings 9 (5): 135. https://www.mdpi.com/2075-5309/9/5/135.
  • Ferreiro-Cabello, Javier, Esteban Fraile-Garcia, Eduardo Martinez de Pison Ascacibar, and Francisco Javier Martinez de Pison Ascacibar. 2016. “Minimizing Greenhouse Gas Emissions and Costs for Structures with Flat Slabs.” Journal of Cleaner Production 137: 922–930. https://www.sciencedirect.com/science/article/pii/S0959652616310496.
  • fib. 2022. “fib Model Code, Chapter 12: Principles of Structural Design and Assessment, Draft 2022.”
  • Fischer, K., and M. H. Faber. 2012. “The LQI Acceptance Criterion and Human Compensation Costs for Monetary Optimization – A Discussion Note.” In LQI Symposium in Kgs. Lyngby, Denmark: Joint Committee on Structural Safety (JCSS).
  • Fischer, K., C. Viljoen, J. Köhler, and M. H. Faber. 2019. “Optimal and Acceptable Reliabilities for Structural Design.” Structural Safety 76: 149–161. https://www.sciencedirect.com/science/article/pii/S0167473017302394.
  • Foraboschi, Paolo, Mattia Mercanzin, and Dario Trabucco. 2014. “Sustainable Structural Design of Tall Buildings Based on Embodied Energy.” Energy and Buildings 68: 254–269. https://www.sciencedirect.com/science/article/pii/S0378778813005653.
  • GABC. 2020. 2020 Global Status Report for Buildings and Construction. Report. Global Alliance for Buildings and Construction. United Nations Environment Programme.
  • Gan, Vincent J. L., Jack C. P. Cheng, Irene M. C. Lo, and C. M. Chan. 2017. “Developing a CO2-e Accounting Method for Quantification and Analysis of Embodied Carbon in High-rise Buildings.” Journal of Cleaner Production 141: 825–836. https://www.sciencedirect.com/science/article/pii/S0959652616314676.
  • García-Segura, T., and V. Yepes. 2016. “Multiobjective Optimization of Post-Tensioned Concrete Box-Girder Road Bridges Considering Cost, CO2 Emissions, and Safety.” Engineering Structures 125: 325–336. https://www.sciencedirect.com/science/article/pii/S0141029616303406.
  • García-Segura, T., V. Yepes, J. Alcalá, and E. Pérez-López. 2015. “Hybrid Harmony Search for Sustainable Design of Post-Tensioned Concrete Box-Girder Pedestrian Bridges.” Engineering Structures 92: 112–122. https://www.sciencedirect.com/science/article/pii/S0141029615001510.
  • Gervásio, H., and L. S. da Silva. 2008. “Comparative Life-Cycle Analysis of Steel-Concrete Composite Bridges.” Structure and Infrastructure Engineering 4 (4): 251–269. https://doi.org/10.1080/15732470600627325.
  • GLOBE. 2022. “Joint Committee on the Global Consensus on Sustainability in the Built Environment.” Decarbonizing Global Construction – Draft, September. https://www.rilem.net/globe.
  • Gollier, Christian. 2010. “Ecological Discounting.” Journal of Economic Theory 145 (2): 812–829. Judgment Aggregation, https://www.sciencedirect.com/science/article/pii/S002205310900115X.
  • Gustavsson, L., and A. Joelsson. 2010. “Life Cycle Primary Energy Analysis of Residential Buildings.” Energy and Buildings 42 (2): 210–220. https://www.sciencedirect.com/science/article/pii/S0378778809002102.
  • Gustavsson, L., K. Pingoud, and R. Sathre. 2006. “Carbon Dioxide Balance of Wood Substitution: Comparing Concrete- and Wood-Framed Buildings.” Mitigation and Adaptation Strategies for Global Change 11 (3): 667–691. https://doi.org/10.1007/s11027-006-7207-1.
  • Hájek, P., C. Fiala, and M. Kynčlová. 2011. “Life Cycle Assessments of Concrete Structures – a Step Towards Environmental Savings.” Structural Concrete 12 (1): 13–22. https://onlinelibrary.wiley.com/doi/abs/10.1002/suco.201000026.
  • Hammond, G. P., and C. I. Jones. 2008. “Embodied Energy and Carbon in Construction Materials.” Proceedings of the Institution of Civil Engineers – Energy and Buildings 161 (2): 87–98. doi:10.1680/ener.2008.161.2.87.
  • Hart, Jim, Bernardino D'Amico, and Francesco Pomponi. 2021. “Whole-Life Embodied Carbon in Multistory Buildings: Steel, Concrete and Timber Structures.” Journal of Industrial Ecology 25 (2): 403–418. https://onlinelibrary.wiley.com/doi/abs/10.1111/jiec.13139.
  • Hawkins, W., S. Cooper, S. Allen, J. Roynon, and T. Ibell. 2021. “Embodied Carbon Assessment Using a Dynamic Climate Model: Case-Study Comparison of a Concrete, Steel and Timber Building Structure.” Structures 33: 90–98. https://www.sciencedirect.com/science/article/pii/S2352012420307323.
  • Hingorani, Ramon, Peter Tanner, Miguel Prieto, and Carlos Lara. 2020. “Consequence Classes and Associated Models for Predicting Loss of Life in Collapse of Building Structures.” Structural Safety 85: 101910. https://www.sciencedirect.com/science/article/pii/S0167473019303741.
  • Holický, M., and M. Sýkora. 2021. “Reliability Approaches Affecting the Sustainability of Concrete Structures.” Sustainability 13 (5) 2627. doi:10.3390/su13052627.
  • Honfi, D. 2014. “Serviceability Floor Loads.” Structural Safety 50: 27–38. https://www.sciencedirect.com/science/article/pii/S0167473014000228.
  • Huang, L., R. A. Bohne, A. Bruland, P. D. Jakobsen, and J. Lohne. 2015. “Life Cycle Assessment of Norwegian Road Tunnel.” The International Journal of Life Cycle Assessment 20 (2): 174–184. https://doi.org/10.1007/s11367-014-0823-1.
  • Huang, L., G. Krigsvoll, F. Johansen, Y. Liu, and X. Zhang. 2018. “Carbon Emission of Global Construction Sector.” Renewable and Sustainable Energy Reviews 81: 1906–1916. doi:10.1016/j.rser.2017.06.001.
  • IBU, Institut Bauen und Umwelt e.V. 2018. “Environmental Product Declaration as per /ISO 14025/ and /EN 15804. Structural Steel: Sections and Plates. Declaration Number: EPD-BFS-20180116-IBG2-EN.” https://www.ibu-epd.com.
  • Ismail, Mohamed A., and Caitlin T. Mueller. 2021. “Minimizing Embodied Energy of Reinforced Concrete Floor Systems in Developing Countries Through Shape Optimization.” Engineering Structures 246: 112955. https://www.sciencedirect.com/science/article/pii/S0141029621010993.
  • ISO. 2015. “ISO 2394. General Principles on Reliability for Structures, 4th Edition.”
  • Jönsson, A., T. Björklund, and A. M. Tillman. 1998. “LCA of Concrete and Steel Building Frames.” The International Journal of Life Cycle Assessment 3 (4): 216–224. https://doi.org/10.1007/BF02977572.
  • Kaethner, S. C., and J. A. Burridge. 2012. “Embodied CO2 of Structural Frames.” Structural Engineer90 (5): 33–40. https://www.istructe.org/journal/volumes/volume-90-(2012)/issue-5/embodied-co2-of-structural-frames/
  • Kalusche, W., and S. Herke. 2020. BKI Baukosten 2020 Neubau. Statistische Kostenkennwerte für Gebäude. Stuttgart: BKI, Baukosteninformationszentrum.
  • Kaveh, A. 2017. Cost and CO2 Emission Optimization of Reinforced Concrete Frames Using Enhanced Colliding Bodies Optimization Algorithm, 319–350. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-48012-1_17.
  • Kaveh, A., R. A. Izadifard, and L. Mottaghi. 2020. “Optimal Design of Planar RC Frames Considering CO2 Emissions Using ECBO, EVPS and PSO Metaheuristic Algorithms.” Journal of Building Engineering28: 101014. https://www.sciencedirect.com/science/article/pii/S2352710219316341.
  • KC, S., and D. Gautam. 2021. “Progress in Sustainable Structural Engineering: A Review.” Innovative Infrastructure Solutions 6: 68. doi:10.1007/s41062-020-00419-3.
  • Khan, F. R., and J. Rankine. 1981. Tall Building Systems and Concepts. New York: American Society of Civil Engineers (ASCE).
  • Kim, S., J.-H. Moon, Y. Shin, G.-H. Kim, and D.-S. Seo. 2013. “Life Comparative Analysis of Energy Consumption and CO2 Emissions of Different Building Structural Frame Types.” The Scientific World Journal 2013: 175702. https://doi.org/10.1155/2013/175702.
  • Köhler, Jochen, and Michele Baravalle. 2019. “Risk-Based Decision Making and the Calibration of Structural Design Codes – Prospects and Challenges.” Civil Engineering and Environmental Systems36 (1): 55–72. https://doi.org/10.1080/10286608.2019.1615477.
  • Kriegler, E., K. Riahi, N. Petermann, V. Bosetti, P. Capros, D. P. van Vuuren, P. Criqui, et al. 2014. Assessing Pathways Toward Ambitious Climate Targets at the Global and European Levels. A Synthesis of Results from the AMPERE Project. Report. https://ampere-project.eu.
  • Lausselet, Carine, Johana Paola Forero Urrego, Eirik Resch, and Helge Brattebø. 2021. “Temporal Analysis of the Material Flows and Embodied Greenhouse Gas Emissions of a Neighborhood Building Stock.” Journal of Industrial Ecology 25 (2): 419–434. https://onlinelibrary.wiley.com/doi/abs/10.1111/jiec.13049.
  • Lee, J. Y., and B. R. Ellingwood. 2015. “Ethical Discounting for Civil Infrastructure Decisions Extending Over Multiple Generations.” Structural Safety 57: 43–52. https://www.sciencedirect.com/science/article/pii/S0167473015000466.
  • Lentz, A. 2007. “Acceptability of Civil Engineering Decisions Involving Human Consequences.” Thesis.
  • Lu, H. R., A. El Hanandeh, and B. P. Gilbert. 2017. “A Comparative Life Cycle Study of Alternative Materials for Australian Multi-Storey Apartment Building Frame Constructions: Environmental and Economic Perspective.” Journal of Cleaner Production 166: 458–473. https://www.sciencedirect.com/science/article/pii/S095965261731781X.
  • McKinsey. 2017. “Reinventing Construction: A Route to Higher Productivity.” Press Release, February 2017.
  • Meinen, N. E., and R. D. J. M. Steenbergen. 2018. “Reliability Levels Obtained by Eurocode Partial Factor Design – a Discussion on Current and Future Reliability Levels.” Heron 63 (3): 243–302.
  • Mergos, P. E. 2018. “Contribution to Sustainable Seismic Design of Reinforced Concrete Members Through Embodied CO2 Emissions Optimization.” Structural Concrete 19 (2): 454–462. https://onlinelibrary.wiley.com/doi/abs/10.1002/suco.201700064.
  • Miller, D., and J.-H. Doh. 2015. “Incorporating Sustainable Development Principles into Building Design: A Review from a Structural Perspective Including Case Study.” The Structural Design of Tall and Special Buildings 24 (6): 421–439. https://onlinelibrary.wiley.com/doi/abs/10.1002/tal.1172.
  • Miller, D., J.-H. Doh, and M. Mulvey. 2015. “Concrete Slab Comparison and Embodied Energy Optimisation for Alternate Design and Construction Techniques.” Construction and Building Materials80: 329–338. https://www.sciencedirect.com/science/article/pii/S0950061815001051.
  • Moon, K. S. 2008. “Sustainable Structural Engineering Strategies for Tall Buildings.” The Structural Design of Tall and Special Buildings 17 (5): 895–914. https://onlinelibrary.wiley.com/doi/abs/10.1002/tal.475.
  • Mottaghi, L., R. A. Izadifard, and A. Kaveh. 2021. “Factors in the Relationship Between Optimal CO2 Emission and Optimal Cost of the RC Frames.” Periodica Polytechnica Civil Engineering 65 (1): 1–14. https://pp.bme.hu/ci/article/view/16790.
  • Müller, Daniel B., Gang Liu, Amund N. Løvik, Roja Modaresi, Stefan Pauliuk, Franciska S. Steinhoff, and Helge Brattebø. 2013. “Carbon Emissions of Infrastructure Development.” Environmental Science and Technology 47 (20): 11739–11746. https://doi.org/10.1021/es402618m.
  • Nahangi, Mohammad, Gursans Guven, Bolaji Olanrewaju, and Shoshanna Saxe. 2021. “Embodied Greenhouse Gas Assessment of a Bridge: A Comparison of Preconstruction Building Information Model and Construction Records.” Journal of Cleaner Production 295: 126388. doi:10.1016/j.jclepro.2021.126388.
  • Nishijima, K., M. H. Faber, and D. Straub. 2007a. “Inter-Generational Distribution of the Life-Cycle Cost of an Engineering Facility.” Journal of Reliability of Structures and Materials 1 (3): 33–46.
  • Nishijima, K., M. H. Faber, and D. Straub. 2007b. “Sustainable Decisions for Life-Cycle Based Design and Maintenance.” Australian Journal of Civil Engineering 4 (1): 59–72. https://doi.org/10.1080/14488353.2007.11463928.
  • Niu, Y., R. Hingorani, G. Fink, and J. Köhler. 2022. “Design Concept for the Sustainable Use of Timber in Structures.” In ICOSSAR 2021–22, 13th International Conference on Structural Safety and Reliability. Shanghai: International Association for Structural Safety and Reliability (IASSAR).
  • Nordhaus, W. 2017. “Revisiting the Social Cost of Carbon.” Proceedings of the National Academy of Sciences 114 (7): 1518. https://www.pnas.org/content/114/7/1518.abstract.
  • Oladazimi, A., S. Mansour, and S. A. Hosseinijou. 2020. “Comparative Life Cycle Assessment of Steel and Concrete Construction Frames: A Case Study of Two Residential Buildings in Iran.” Buildings 10 (3): 54. doi:10.3390/buildings10030054.
  • Paya-Zaforteza, I., V. Yepes, A. Hospitaler, and F. González-Vidosa. 2009. “CO2-Optimization of Reinforced Concrete Frames by Simulated Annealing.” Engineering Structures 31 (7): 1501–1508. https://www.sciencedirect.com/science/article/pii/S0141029609000996.
  • Pindyck, R. S. 2017. “Coase Lecture–Taxes, Targets and the Social Cost of Carbon.” Economica 84 (335): 345–364. https://doi.org/10.1111/ecca.12243.
  • Pindyck, R. S. 2017. “The Use and Misuse of Models for Climate Policy.” Review of Environmental Economics and Policy 11 (1): 100–114. https://doi.org/10.1093/reep/rew012.
  • Pomponi, Francesco, and Alice Moncaster. 2016. “Embodied Carbon Mitigation and Reduction in the Built Environment – What Does the Evidence Say?” Journal of Environmental Management 181: 687–700. https://www.sciencedirect.com/science/article/pii/S0301479716305746.
  • Rackwitz, R. 2000. “Optimization – the Basis of Code-Making and Reliability Verification.” Structural Safety 22 (1): 27–60. https://www.sciencedirect.com/science/article/pii/S0167473099000375.
  • Rackwitz, R., A. Lentz, and M. Faber. 2005. “Socio-Economically Sustainable Civil Engineering Infrastructures by Optimization.” Structural Safety 27 (3): 187–229. https://www.sciencedirect.com/science/article/pii/S0167473004000487.
  • Röck, Martin, Marcella Ruschi Mendes Saade, Maria Balouktsi, Freja Nygaard Rasmussen, Harpa Birgisdottir, Rolf Frischknecht, Guillaume Habert, Thomas Lützkendorf, and Alexander Passer. 2020. “Embodied GHG Emissions of Buildings – the Hidden Challenge for Effective Climate Change Mitigation.” Applied Energy 258: 114107. https://www.sciencedirect.com/science/article/pii/S0306261919317945.
  • Rodriguez-Nikl, T., J. W. Christiansen, and K. Walters. 2012. “Reliability-Based Life Cycle Assessment of Green Concrete Structures.” In ACI Symposium, Vol. 289, 1–13. American Concrete Institute (ACI)
  • Sakai, K. 2005. “Environmental Design for Concrete Structures.” Journal of Advanced Concrete Technology 3 (1): 17–28. doi:10.3151/jact.3.17.
  • Sakai, K., T. Shibata, A. Kasuga, and H. Nakamura. 2016. “Sustainability Design of Concrete Structures.” Structural Concrete17 (6): 1114–1124. https://onlinelibrary.wiley.com/doi/abs/10.1002/suco.201600069.
  • SAKO. 1999. Basis of design of structures. Proposals for Modification of Partial Safety Factors in Eurocodes. Report. Joint Committee of Nordic Committee on Building Regulations (NKB) and Nordic Standardization in the Construction Field (INSTA-B).
  • Sarkisian, M., and D. Shook. 2014. “Embodied Carbon in Structures and Cities.” In IABSE Symposium Madrid: Engineering for Progress, Nature and People, 3166–3173. Zurich: International Association for Bridge and Structural Engineering (IABSE).
  • Sartori, I., and A. G. Hestnes. 2007. “Energy Use in the Life Cycle of Conventional and Low-energy Buildings: A Review Article.” Energy and Buildings 39 (3): 249–257. https://www.sciencedirect.com/science/article/pii/S0378778806001873.
  • Saxe, Shoshanna, Gursans Guven, Lucas Pereira, Alessandro Arrigoni, Tamar Opher, Adrien Roy, Aldrick Arceo, et al. 2020. “Taxonomy of Uncertainty in Environmental Life Cycle Assessment of Infrastructure Projects.” Environmental Research Letters 15 (8): 083003. https://dx.doi.org/10.1088/1748-9326/ab85f8.
  • Simonen, K., B. Rodriguez, and C. De Wolf. 2017. “Benchmarking the Embodied Carbon of Buildings.” Technology, Architecture + Design 1 (2): 208–218. doi:10.1080/24751448.2017.1354623.
  • Skullestad, Julie Lyslo, Rolf André Bohne, and Jardar Lohne. 2016. “High-Rise Timber Buildings as a Climate Change Mitigation Measure – a Comparative LCA of Structural System Alternatives.” Energy Procedia 96: 112–123. Sustainable Built Environment Tallinn and Helsinki Conference SBE16, https://www.sciencedirect.com/science/article/pii/S1876610216307512.
  • Sørensen, J. D., I. B. Kroon, and M. H. Faber. 1994. “Optimal Reliability-Based Code Calibration.” Structural Safety 15 (3): 197–208. https://www.sciencedirect.com/science/article/pii/016747309490040X.
  • Tanner, P., J. L. Bellod, and D. Sanz. 2018. “Paper and Pencil in the Age of BIM.” Structural Engineering International 28 (4): 396–407. https://doi.org/10.1080/10168664.2018.1496782.
  • Tanner, P., and R. Hingorani. 2015. “Acceptable Risks to Persons Associated with Building Structures.” Structural Concrete 16 (3): 314–322. https://onlinelibrary.wiley.com/doi/pdf/10.1002/suco.201500012.
  • Tol, R. S. J. 2019. “A Social Cost of Carbon for (Almost) Every Country.” Energy Economics 83: 555–566. https://www.sciencedirect.com/science/article/pii/S014098831930218X.
  • Vilutiene, Tatjana, Gvidas Kumetaitis, Arvydas Kiaulakis, and Darius Kalibatas. 2020. “Assessing the Sustainability of Alternative Structural Solutions of a Building: A Case Study.” Buildings 10 (2): 36. doi:10.3390/buildings10020036.
  • Virguez, E., and M. H. Faber. 2011. “Supporting Decisions on Global Health and Life Safety Investments.” In Proceedings of the 11th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP), 434–443. Zurich: CRC Press/Balkema.
  • Vukotic, L., R. A. Fenner, and K. Symons. 2010. “Assessing Embodied Energy of Building Structural Elements.” Proceedings of the Institution of Civil Engineers – Engineering Sustainability 163 (3): 147–158. https://www.icevirtuallibrary.com/doi/abs/10.1680/ensu.2010.163.3.147.
  • Webb, D., and B. M. Ayyub. 2017. “Sustainability Quantification and Valuation. I: Definitions, Metrics, and Valuations for Decision Making.” ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering 3 (3): E4016001. https://doi.org/10.1061/AJRUA6.0000893.
  • Weikard, Hans-Peter, and Xueqin Zhu. 2005. “Discounting and Environmental Quality: When Should Dual Rates be Used?” Economic Modelling 22 (5): 868–878. https://www.sciencedirect.com/science/article/pii/S0264999305000453.
  • Wiik, M. K., E. Selvig, M. Fuglseth, C. Lausselet, E. Resch, I. Andresen, H. Brattebø, and U. Hahn. 2020. “GHG Emission Requirements and Benchmark Values for Norwegian Buildings.” In IOP Conference Series: Earth and Environmental Science. Vol. 588, 022005. IOP Publishing Ltd. doi:10.1088/1755-1315/588/2/022005.
  • Yepes, V., J. V. Martí, and T. García-Segura. 2015. “Cost and CO2 Emission Optimization of Precast–Prestressed Concrete U-Beam Road Bridges by a Hybrid Glowworm Swarm Algorithm.” Automation in Construction 49: 123–134. https://www.sciencedirect.com/science/article/pii/S0926580514002246.
  • Ženíšek, M., J. Pežta, M. Tipka, V. Kočí, and P. Hájek. 2020. “Optimization of RC Structures in Terms of Cost and Environmental Impact–Case Study.” Sustainability 12 (20): 8532. https://www.mdpi.com/2071-1050/12/20/8532.
  • Zhang, Chao, Muhammad Amaduddin, and Lee Canning. 2011. “Carbon Dioxide Evaluation in a Typical Bridge Deck Replacement Project.” Proceedings of the Institution of Civil Engineers – Energy 164 (4): 183–194. doi:10.1680/ener.2011.164.4.183.