515
Views
21
CrossRef citations to date
0
Altmetric
Original Articles

Multi-scale computational model for design of flexible pavement – part I: expanding multi-scaling

, , &
Pages 309-320 | Received 01 May 2015, Accepted 03 May 2015, Published online: 28 Jul 2015

References

  • Abu Al-Rub, R.K., et al., 2010. A micro-damage healing model that improves prediction of fatigue life in asphalt mixtures. International Journal of Engineering Science, 48, 966–990.10.1016/j.ijengsci.2010.09.016
  • Abu Al-Rub, R.K., et al., 2012. Comparing finite element and constitutive modelling techniques for predicting rutting of asphalt pavements. International Journal of Pavement Engineering, 13 (4), 322–338.10.1080/10298436.2011.566613
  • Abu Al-Rub, R.K. and Darabi, M.K., 2012. A thermodynamic framework for constitutive modeling of time- and rate-dependent materials Part I: theory. International Journal of Plasticity, 34, 61–92.
  • Abu Al-Rub, R.K., et al., 2013. Mechanistic-based constitutive modeling of oxidative aging in aging-susceptible materials and its effect on the damage potential of asphalt concrete. Construction and Building Materials, 41, 439–454.10.1016/j.conbuildmat.2012.12.044
  • Aigner, E., Lackner, R., and Pichler, C., 2009. Multiscale prediction of viscoelastic properties of asphalt concrete. Journal of Materials in Civil Engineering, 21 (12), 771–780.10.1061/(ASCE)0899-1561(2009)21:12(771)
  • Allen, D.H. and Yoon, C., 1998. Homogenization techniques for thermoviscoelastic solids containing cracks. International Journal of Solids and Structures, 35, 4035–4054.10.1016/S0020-7683(97)00299-0
  • Allen, D.H., 2001. Homogenization principles and their application to continuum damage mechanics. Composites Science and Technology, 61, 2223–2230.10.1016/S0167-6636(00)00069-7
  • Allen, D., 2002. Homogenization principles and their application to continuum damage mechanics. Composites science and technology, 61, 2223–2230.
  • Allen, D.H. and Searcy, C.R., 2006. A model for predicting the evolution of multiple cracks on multiple length scales in viscoelastic composites. Journal of Materials Science, 41 (20), 6501–6519.
  • Allen, D.H. 2014. How mechanics shaped the modern world Cham: Springer.10.1007/978-3-319-01701-3
  • American Association of State Highway and Transportation Officials, 2008. Mechanistic-empirical pavement design guide. Washington, DC: AASHTO.
  • Aragão, T.S., Kim, Y., Lee, J., and Allen, D.H., 2010. A micromechanical model for heterogeneous asphalt concrete mixtures subjected to fracture failure. Journal of Materials in Civil Engineering, 23, 30–38.
  • Costanzo, F., Boyd, J.G., and Allen, D.H., 1996. Micromechanics and homogenization of inelastic composite materials with growing cracks. Journal of the Mechanics and Physics of Solids, 44 (3), 333–370.10.1016/0022-5096(95)00082-8
  • Darabi, M.K., et al., 2011. A thermo-viscoelastic–viscoplastic–viscodamage constitutive model for asphaltic materials. International Journal of Solids and Structures, 48 (1), 191–207.10.1016/j.ijsolstr.2010.09.019
  • Darabi, M.K., Abu Al-Rub, R.K., and Little, D.N., 2012. A continuum damage mechanics framework for modeling micro-damage healing. International Journal of Solids and Structures, 49 (3–4), 492–513.10.1016/j.ijsolstr.2011.10.017
  • Darabi, M.K., et al., 2012. A modified viscoplastic model to predict the permanent deformation of asphaltic materials under cyclic-compression loading at high temperatures. International Journal of Plasticity, 35, 100–134.10.1016/j.ijplas.2012.03.001
  • Darabi, M.K., et al., 2013. Constitutive modeling of fatigue damage response of asphalt concrete materials with consideration of micro-damage healing. International Journal of Solids and Structures, 50, 2901–2913.10.1016/j.ijsolstr.2013.05.007
  • Helms, K.L.E., Allen, D.H., and Hurtado, L.D., 1999. A model for predicting grain boundary cracking in polycrystalline viscoplastic materials including scale effects. International Journal of Fracture, 95, 175–194.10.1023/A:1018696101352
  • Kim, H. and Buttlar, W.G., 2009. Multi-scale fracture modeling of asphalt composite structures. Composites Science Technology, 69 (15–16), 2716–2723.10.1016/j.compscitech.2009.08.014
  • Kim, Y., Allen, D.H., and Little, D.N., 2005. Damage-induced modeling of asphalt mixtures through computational micromechanics and cohesive zone fracture. Journal of Materials in Civil Engineering, 17, 477–484.10.1061/(ASCE)0899-1561(2005)17:5(477)
  • Kim, Y., et al., 2010. Damage modeling of bituminous mixtures considering mixture microstructure, viscoelasticity, and cohesive zone fracture. Canadian Journal of Civil Engineering, 37, 1125–1136.10.1139/L10-043
  • Kim, Y., Souza, F., and Teixeira, T., 2013. A two-way coupled multiscale model for predicting damage-associated performance of asphaltic roadways. Computational Mechanics, 51, 187–201.10.1007/s00466-012-0716-8
  • Lesueur, D. and Little, D., 1999. Effect of hydrated lime on rheology, fracture, and aging of bitumen. Journal of the Transportation Research Board, 1661, 93–105.10.3141/1661-14
  • Little, D.N., Allen, D.H., and Bhasin, A., 2015. Modeling and design of flexible pavements and materials. New York, NY: Springer.
  • Lutif, J., et al., 2010. Multiscale modeling to predict mechanical behavior of asphalt mixtures. Journal of the Transportation Research Record, 1772, 28–35.10.3141/2181-04
  • Moore, G., 1965. Cramming more components onto integrated circuits. Electronics, 19 April pp. 114–117.
  • Rodin, G., 1996. ‘Eshelby’s inclusion problem for polygons and polyhedra. Journal of the Mechanics and Physics of Solids, 44, 1977–1995.
  • Soares, R.F., Kim, Y.R., and Allen, D.H. 2008. Multiscale computational modeling for predicting evolution of damage in asphaltic pavements. In: A. Loizos, T. Scarpas, and I. L. Al-Qadi, eds. Pavement cracking mechanisms, modeling, detection, testing and case histories. London: CRC Press, 599–608.
  • Souza, F.V., et al., 2004. Model for predicting damage evolution in heterogeneous viscoelastic asphaltic mixtures. Journal of the Transportation Research Board, 1891, 131–139.10.3141/1891-16
  • Souza, F.V., Allen, D.H., and Kim, Y.R., 2008. Multiscale model for predicting damage evolution in composites due to impact loading. Composites Science and Technology, 68, 2624–2634.10.1016/j.compscitech.2008.04.043
  • Souza, F.V. and Allen, D.H., 2009. A model for predicting the multiscale crack growth due to an impact in heterogeneous viscoelastic solids. Mechanics of Composite Materials, 45, 145–152.10.1007/s11029-009-9077-6
  • Souza, F.V. and Allen, D.H., 2011a. Modeling failure of heterogeneous viscoelastic solids under dynamic/impact loading due to multiple evolving cracks using a multiscale model. Mechanics Time-Dependent Materials, 14, 125–151.
  • Souza, F.V. and Allen, D.H., 2011b. Multiscale modeling of impact on heterogeneous viscoelastic solids containing evolving microcracks. International Journal of Numerical Methods in Engineering, 82, 464–504.
  • Valenta, R., Šejnoha, M., and Zeman, J., 2010. Macroscopic constitutive law for mastic asphalt mixtures from multiscale modeling. International Journal of Multiscale Computational Engineering, 8 (1), 131–149.
  • You, T., et al., 2012. Three-dimensional microstructural modeling of asphalt concrete using a unified viscoelastic–viscoplastic–viscodamage model. Construction and Building Materials, 28 (1), 531–548.10.1016/j.conbuildmat.2011.08.061
  • Zocher, M.A., Allen, D.H., and Groves, S.E., 1997. A three-dimensional finite element formulation for thermoviscoelastic orthotropic media. International Journal for Numerical Methods in Engineering, 40, 2267–2288.10.1002/(ISSN)1097-0207

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.