540
Views
21
CrossRef citations to date
0
Altmetric
Articles

Study on understanding functional characteristics of multi-wall CNT modified asphalt binder

ORCID Icon &
Pages 1069-1082 | Received 23 Feb 2018, Accepted 29 Aug 2018, Published online: 06 Sep 2018

References

  • Ahir, S.V. and Terentjev, E.M., 2005. Photomechanical actuation in polymer-nanotube composites. Nature Materials, 4 (6), 491–495. doi: 10.1038/nmat1391
  • Airey, G.D., 2002. Rheological evaluation of ethylene vinyl acetate polymer modified bitumens. Construction and Building Materials, 16 (8), 473–487. doi: 10.1016/S0950-0618(02)00103-4
  • Ameri, M., et al., 2016. Investigation of fatigue and fracture properties of asphalt mixtures modified with carbon nanotubes. Fatigue & Fracture of Engineering Materials & Structures, 39 (7), 896–906. doi: 10.1111/ffe.12408
  • Amin, I., et al., 2016. Laboratory evaluation of asphalt binder modified with carbon nanotubes for Egyptian climate. Construction and Building Materials, 121, 361–372. doi: 10.1016/j.conbuildmat.2016.05.168
  • Amirkhanian, A.N., Xiao, F., and Amirkhanian, S.N., 2010. Evaluation of high temperature rheological characteristics of asphalt binder with carbon nano particles. Journal of Testing and Evaluation, 39 (4), 583–591. doi: 10.1520/JTE103133
  • Arabani, M. and Faramarzi, M., 2015. Characterization of CNTs-modified HMA’s mechanical properties. Construction and Building Materials, 83, 207–215. doi: 10.1016/j.conbuildmat.2015.03.035
  • Ashish, P.K. and Singh, D., 2018a. High-and intermediate-temperature performance of asphalt binder containing carbon nanotube using different rheological approaches. Journal of Materials in Civil Engineering, 30 (1), 04017254-1:14. doi: 10.1061/(ASCE)MT.1943-5533.0002106
  • Ashish, P.K. and Singh, D., 2018b. Development of empirical model for predicting G∗/Sinδ and viscosity value for nanoclay and carbon nano tube modified asphalt binder. Construction and Building Materials, 165, 363–371. doi: 10.1016/j.conbuildmat.2018.01.021
  • Ashish, P.K., Singh, D., and Bohm, S., 2016. Evaluation of rutting, fatigue and moisture damage performance of nanoclay modified asphalt binder. Construction and Building Materials, 113, 341-350. doi: 10.1016/j.conbuildmat.2016.03.057
  • Ashish, P.K., Singh, D., and Bohm, S., 2017. Investigation on influence of nanoclay addition on rheological performance of asphalt binder. Road Materials and Pavement Design, 18 (5), 1007–1026. doi: 10.1080/14680629.2016.1201522
  • Bai, J.B. and Allaoui, A., 2003. Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites—experimental investigation. Composites Part A: Applied Science and Manufacturing, 34 (8), 689–694. doi: 10.1016/S1359-835X(03)00140-4
  • Brule, B., 1996. Polymer-modified asphalt cements used in the road construction industry: basic principles. Transportation Research Record: Journal of the Transportation Research Board, 1535, 48–53. doi:10.3141/1535-07 doi: 10.1177/0361198196153500107
  • Das, A.K. and Singh, D., 2018. Effects of regular and nanosized hydrated lime fillers on fatigue and bond strength behavior of asphalt mastic. 97th annual meeting: Transportation Research Board, 18-03836.
  • Flory, A.L., Ramanathan, T., and Brinson, L.C., 2010. Physical aging of single wall carbon nanotube polymer nanocomposites: effect of functionalization of the nanotube on the enthalpy relaxation. Macromolecules, 43 (9), 4247–4252. doi: 10.1021/ma901670m
  • Galooyak, S.S., et al., 2010. Rheological properties and storage stability of bitumen/SBS/montmorillonite composites. Construction and Building Materials, 24 (3), 300–307. doi: 10.1016/j.conbuildmat.2009.08.032
  • Garcıa-Morales, M., et al., 2004. Viscous properties and microstructure of recycled EVA modified bitumen. Fuel, 83 (1), 31–38. doi: 10.1016/S0016-2361(03)00217-5
  • Giavarini, C., et al., 1996. Production of stable polypropylene-modified bitumens. Fuel, 75 (6), 681–686. doi: 10.1016/0016-2361(95)00312-6
  • Giraldo, L.F., et al., 2008. Scratch and wear resistance of polyamide 6 reinforced with multiwall carbon nanotubes. Journal of Nanoscience and Nanotechnology, 8 (6), 3176–3183. doi: 10.1166/jnn.2008.092
  • Golestani, B., Nejad, F.M., and Galooyak, S.S., 2012. Performance evaluation of linear and nonlinear nanocomposite modified asphalts. Construction and Building Materials, 35, 197–203. doi: 10.1016/j.conbuildmat.2012.03.010
  • Goli, A., Ziari, H., and Amini, A., 2017. Influence of carbon nanotubes on performance properties and storage stability of SBS modified asphalt binders. Journal of Materials in Civil Engineering, 29 (8), 04017070:1-9. doi: 10.1061/(ASCE)MT.1943-5533.0001910
  • Gong, M., et al. 2017. Investigating the performance, chemical, and microstructural properties of carbon nanotube-modified asphalt binder. Road Materials and Pavement Design. doi: 10.1080/14680629.2017.1323661
  • Haider, S.W., et al., 2011. Characterizing temperature susceptibility of asphalt binders using activation energy for flow. First Congress of Transportation and Development Institute, 493–503. doi: 10.1061/41167(398)48
  • Halelfadl, S., et al., 2013. Viscosity of carbon nanotubes water-based nanofluids: influence of concentration and temperature. International Journal of Thermal Sciences, 71, 111–117. doi: 10.1016/j.ijthermalsci.2013.04.013
  • Huang, Y.Y., Ahir, S.V., and Terentjev, E.M., 2006. Dispersion rheology of carbon nanotubes in a polymer matrix. Physical Review B, 73 (12), 125422:1–8. doi: 10.1103/PhysRevB.73.125422
  • Iijima, S., 1991. Helical microtubules of graphitic carbon. Nature, 354 (6348), 56–58. doi: 10.1038/354056a0
  • Jahromi, S.G. and Khodaii, A., 2009. Effects of nanoclay on rheological properties of bitumen binder. Construction and Building Materials, 23 (8), 2894–2904. doi: 10.1016/j.conbuildmat.2009.02.027
  • Jamshidi, A., et al., 2015. Evaluation of the rheological properties and activation energy of virgin and recovered asphalt binder blends. Journal of Materials in Civil Engineering, 27 (3), 04014135:1–11. doi: 10.1061/(ASCE)MT.1943-5533.0001024
  • Jo, B. and Banerjee, D, 2014. Viscosity measurements of multi-walled carbon nanotubes-based high temperature nanofluids. Materials Letters, 122, 212–215. doi: 10.1016/j.matlet.2014.02.032
  • Kashiwagi, T., et al., 2005. Nanoparticle networks reduce the flammability of polymer nanocomposites. Nature Materials, 4 (12), 928–933. doi: 10.1038/nmat1502
  • Khattak, M.J., et al., 2013. Microstructure and fracture morphology of carbon nano-fiber modified asphalt and hot mix asphalt mixtures. Materials and Structures, 46 (12), 2045–2057. doi: 10.1617/s11527-013-0035-3
  • Kök, B.V., Yılmaz, M., and Akpolat, M., 2014. Evaluation of the conventional and rheological properties of SBS+ Sasobit modified binder. Construction and Building Materials, 63, 174–179. doi: 10.1016/j.conbuildmat.2014.04.015
  • Larsen-Basse, J. and Chong, K.P., 2006. Nanomaterials in construction and rehabilitation: Contributions and perspectives of the US National Science Foundation. 2nd International Symposium on Nanotechnology in Construction: RILEM Publications, 17–25.
  • Leng, Y., 2009. Materials characterization: introduction to microscopic and spectroscopic methods. New York: John Wiley & Sons.
  • Liu, G., et al., 2010. Influence of sodium and organo-montmorillonites on the properties of bitumen. Applied Clay Science, 49 (1), 69–73. doi: 10.1016/j.clay.2010.04.005
  • Liu, G., et al., 2011. Influence of organo-montmorillonites on fatigue properties of bitumen and mortar. International Journal of Fatigue, 33 (12), 1574–1582. doi: 10.1016/j.ijfatigue.2011.06.014
  • Ma, P.C., et al., 2010. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Composites Part A: Applied Science and Manufacturing, 41 (10), 1345–1367. doi: 10.1016/j.compositesa.2010.07.003
  • McLeod, N.W., 1989. Relationship of paving asphalt temperature susceptibility as measured by pvn to paving asphalt specifications, asphalt paving mixture design and asphalt pavement performance. Proc of Association of the Asphalt Paving Technologists, 58, 410–489.
  • Osman, M.A., Mittal, V., and Suter, U.W., 2007. Poly(propylene)-layered silicate nanocomposites: gas permeation properties and clay exfoliation. Macromolecular Chemistry and Physics, 208 (1), 68–75. doi: 10.1002/macp.200600444
  • Ouyang, C.F., et al., 2006. Improving the aging resistance of styrene-butadiene-styrene tri-block copolymer modified asphalt by addition of antioxidants. Polymer Degradation and Stability, 91 (4), 795–804. doi: 10.1016/j.polymdegradstab.2005.06.009
  • Parvez, M.A., et al., 2014. Asphalt modification using acid treated waste oil fly ash. Construction and Building Materials, 70, 201–209. doi: 10.1016/j.conbuildmat.2014.07.045
  • Peigney, A., et al., 2001. Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon, 39 (4), 507–514. doi: 10.1016/S0008-6223(00)00155-X
  • Pérez-Lepe, A., Martínez-Boza, F.J., and Gallegos, C., 2007. High temperature stability of different polymer-modified bitumens: a rheological evaluation. Journal of Applied Polymer Science, 103 (2), 1166–1174. doi: 10.1002/app.25336
  • Polacco, G., et al., 2008. Rheological properties of asphalt/SBS/clay blends. European Polymer Journal, 44 (11), 3512–3521. doi: 10.1016/j.eurpolymj.2008.08.032
  • Pötschke, P., Fornes, T.D., and Paul, D.R., 2002. Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer, 43 (11), 3247–3255. doi: 10.1016/S0032-3861(02)00151-9
  • Praticò, F.G., Casciano, A., and Tramontana, D., 2011. Pavement life-cycle cost and asphalt binder quality: theoretical and experimental investigation. Journal of Construction Engineering and Management, 137 (2), 99–107. doi: 10.1061/(ASCE)CO.1943-7862.0000264
  • Rafique, M.M.A. and Iqbal, J., 2011. Production of carbon nanotubes by different routes-a review. Journal of Encapsulation and Adsorption Sciences, 1 (2), 29–34. doi: 10.4236/jeas.2011.12004
  • Ramana, G.V., et al., 2010. Mechanical properties of multi-walled carbon nanotubes reinforced polymer nanocomposites. Indian Journal of Engineering & Materials Sciences, 17, 331–337. Available from: http://hdl.handle.net/123456789/10508
  • Salomon, D. and Zhai, H., 2002. Ranking asphalt binders by activation energy for flow. Journal of Applied Asphalt Binder Technology, 2 (2), 52–60.
  • Salvetat, J.P., et al., 1999. Elastic and shear moduli of single-walled carbon nanotube ropes. Physical Review Letters, 82 (5), 944–947. doi: 10.1103/PhysRevLett.82.944
  • Santagata, E., et al., 2012. Rheological characterization of bituminous binders modified with carbon nanotubes. Procedia - Social and Behavioral Sciences, 53, 546–555. doi: 10.1016/j.sbspro.2012.09.905
  • Santagata, E., et al., 2015a. Fatigue properties of bituminous binders reinforced with carbon nanotubes. International Journal of Pavement Engineering, 16 (1), 80–90. doi: 10.1080/10298436.2014.923099
  • Santagata, E., et al., 2015b. Fatigue and healing properties of nano-reinforced bituminous binders. International Journal of Fatigue, 80, 30–39. doi: 10.1016/j.ijfatigue.2015.05.008
  • Shang, L., et al., 2011. Pyrolyzed wax from recycled cross-linked polyethylene as warm mix asphalt (WMA) additive for SBS modified asphalt. Construction and Building Materials, 25 (2), 886–891. doi: 10.1016/j.conbuildmat.2010.06.097
  • Shu, B., et al., 2017. The utilization of multiple-walled carbon nanotubes in polymer modified bitumen. Materials, 10 (4), 416:1–16. doi: 10.3390/ma10040416
  • Song, Y.S. and Youn, J.R., 2005. Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon, 43 (7), 1378–1385. doi: 10.1016/j.carbon.2005.01.007
  • Steyn, W.J., 2009. Potential applications of nanotechnology in pavement engineering. Journal of Transportation Engineering, 135 (10), 764–772. doi: 10.1061/(ASCE)0733-947X(2009)135:10(764)
  • Steyn, W.J., et al., 2013. Evaluating the properties of bitumen stabilized with carbon nanotubes. Advanced Materials Research, 723, 312–319. doi: 10.4028/www.scientific.net/AMR.723.312
  • Treacy, M.J., Ebbesen, T.W., and Gibson, J.M., 1996. Exceptionally high Young's modulus observed for individual carbon nanotubes. Letters to Nature, 381 (6584), 678–680. doi: 10.1038/381678a0
  • Wang, X., et al., 2009. Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates. Nano Letters, 9 (9), 3137–3141. doi: 10.1021/nl901260b
  • Xiao, F., Amirkhanian, A.N., and Amirkhanian, S.N., 2011. Long-term ageing influence on rheological characteristics of asphalt binders containing carbon nanoparticles. International Journal of Pavement Engineering, 12 (6), 533–541. doi: 10.1080/10298436.2011.560267
  • Yu, M.F., et al., 2000. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science, 287 (5453), 637–640. doi: 10.1126/science.287.5453.637
  • Yu, J.Y., et al., 2009. Effect of organo-montmorillonite on aging properties of asphalt. Construction and Building Materials, 23 (7), 2636–2640. doi: 10.1016/j.conbuildmat.2009.01.007
  • Zhang, B., et al., 2009. The effect of styrene–butadiene–rubber/montmorillonite modification on the characteristics and properties of asphalt. Construction and Building Materials, 23 (10), 3112–3117. doi: 10.1016/j.conbuildmat.2009.06.011
  • Zhang, H., et al., 2015a. Influence of surface modification on physical and ultraviolet aging resistance of bitumen containing inorganic nanoparticles. Construction and Building Materials, 98, 735–740. doi: 10.1016/j.conbuildmat.2015.08.138
  • Zhang, D., et al., 2017. Synergetic effect of multi-dimensional nanomaterials for anti-aging properties of SBS modified bitumen. Construction and Building Materials, 144, 423–431. doi: 10.1016/j.conbuildmat.2017.03.205
  • Zhang, F., Yu, J., and Wu, S., 2012. Influence of ageing on rheology of SBR/sulfur-modified asphalts. Polymer Engineering & Science, 52 (1), 71–79. doi: 10.1002/pen.22047
  • Zhang, H., Zhu, C., and Kuang, D., 2015b. Physical, rheological, and aging properties of bitumen containing organic expanded vermiculite and nano-zinc oxide. Journal of Materials in Civil Engineering, 28 (5), 04015203:1–8. doi: 10.1061/(ASCE)MT.1943-5533.0001499

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.