101
Views
0
CrossRef citations to date
0
Altmetric
Articles

A synthesis of the first full-scale experiment in Central America

ORCID Icon, ORCID Icon, &
Pages 560-569 | Received 05 Nov 2018, Accepted 03 Jun 2019, Published online: 19 Jun 2019

References

  • Aguiar-Moya, J.P., et al., 2012. PaveLab and heavy vehicle simulator (HVS) implementation at the national laboratory of materials and testing models (LanammeUCR) of the University of Costa Rica. Accelerated pavement testing (APT) conference, Davis, CA.
  • Aguiar-Moya, J.P., et al., 2016. Development of IRI models based on APT data. In: The roles of accelerated pavement testing in pavement sustainability. Switzerland: Springer, 799–813.
  • Aguiar-Moya, J.P., et al., 2018. Effect of moisture on full sale pavement distress. International society for asphalt pavements conference (ISAP), Fortaleza, Brazil.
  • Al-Qadi, I. and Nassar, W., 2003. Fatigue shift factors to predict HMA performance. International Journal of Pavement Engineering, 4 (2), 69–76. doi:10.1080/10298430310001593254.
  • ARA Inc., 2004. Guide for the mechanistic-empirical design of new and rehabilitated pavement structures ( Final report, NCHRP 1–37A). Washington, DC: Transportation Research Board of the National Academies.
  • Charlier, R., et al., 2009. Water influence on bearing capacity and pavement performance: field observations. In: A. Dawson, ed. Water in road structures – movement, drainage & effects. Heidelberg: Springer, 175–192.
  • Chun, S., et al., 2018. Evaluation of top-down cracking potential for asphalt pavements with 4.75 mm nominal maximum aggregate size mixture layer using full-scale field tests and finite element analysis. Road Materials and Pavement Design, 19 (5), 1089–1101. doi:10.1080/14680629.2017.1300596.
  • Ekblad, J., 2007. Influence of water on coarse granular road material properties. Stockholm: KTH Royal Institute of Technology.
  • Hugo, F. and Epps Martin, A.L., 2004. Significant findings from full-scale accelerated pavement testing. NCHRP synthesis 325, Washington, DC.
  • Korkiala-Tanttu, L. and Dawson, A., 2007. Relating full-scale pavement rutting to laboratory permanent deformation testing. International Journal of Pavement Engineering, 8 (1), 19–28. doi:10.1080/10298430600783509.
  • Leiva-Villacorta, F., et al., 2013. Implementación de ensayos acelerados de pavimentos en Costa Rica con el equipo HVS. Congreso Ibero – Latinoamericano del Asfalto, CILA XVII.
  • Leiva-Villacorta, F., et al., 2016a. Development and calibration of permanent deformation models. In: The roles of accelerated pavement testing in pavement sustainability. Switzerland: Springer, 573–587.
  • Leiva-Villacorta, F., et al., 2016b. Influence of tire footprint area and pressure distribution on pavement responses. In: The roles of accelerated pavement testing in pavement sustainability. Switzerland: Springer, 685–700.
  • Leiva-Villacorta, F., Aguiar-Moya, J.P., and Loría-Salazar, L.G., 2015. Accelerated pavement testing first results at the LanammeUCR APT facility. Transportation research board 94th annual meeting proceedings, Washington, DC.
  • Leiva-Villacorta, F., Aguiar-Moya, J.P., and Loria-Salazar, L.G, 2014. Ensayos Acelerados de Pavimentos con el equipo HVS: Implementación y Primeros Resultados. 11vo Congreso Internacional Gestión y Patrimonio Vial. Chile.
  • Lekarp, F., Isacsson, U. and Dawson, A., 2000a. State of the art. I: resilient response of unbound aggregates. Journal of Transportation Engineering, 126 (1), 66–75. doi: 10.1061/(ASCE)0733-947X(2000)126:1(66)
  • Lekarp, F., Isacsson, U. and Dawson, A., 2000b. State of the art. II: permanent strain response of unbound aggregates. Journal of Transportation Engineering, 126 (1), 76–83. doi: 10.1061/(ASCE)0733-947X(2000)126:1(76)
  • Loría-Salazar, L.G., et al., 2015. Comparación de desempeño en pista de ensayos acelerados a escala natural de dos estructuras de pavimento semi-rígidas. Congreso Ibero – Latinoamericano del Asfalto, CILA XVIII.
  • Masad, E., et al., 2008. A unified method for the analysis of controlled-strain and controlled-stress fatigue testing. International Journal of Pavement Engineering, 9 (4), 233–246. doi:10.1080/10298430701551219.
  • Mollenhauer, K. and Wistuba, M., 2016. Influence of asphalt compaction procedure on 3D deformation properties. International Journal of Pavement Engineering, 17 (1), 5–12. doi:10.1080/10298436.2013.812213.
  • Norouzi, A. and Kim, Y.R., 2017. Mechanistic evaluation of fatigue cracking in asphalt pavements. International Journal of Pavement Engineering, 18 (6), 530–546. doi:10.1080/10298436.2015.1095909.
  • Ping, W.V., Yang, Z., and Ho, R.K.H., 2003. Full-scale laboratory evaluation of moisture effect on resilient moduli of granular pavement subgrade layers. Road Materials and Pavement Design, 4 (3), 309–330. doi:10.1080/14680629.2003.9689951.
  • Rahman, S. and Erlingsson, S., 2012. Moisture sensitivity of unbound granular materials. Proceedings of the 4th European pavement and asset management conference (EPAM4), Malmö, Sweden (CD-ROM).
  • Salour, F. and Erlingsson, S., 2013. Investigation of a pavement structural behavior during spring thaw using falling weight deflectometer. Road Materials and Pavement Design, 14 (1), 141–158. doi:10.1080/14680629.2012.754600.
  • Sayers, M.W., Gillespie, T.D., and Paterson, W.D., 1986. Guidelines for the conduct and calibration of road roughness measurements ( World Bank technical paper no. 46). Washington, DC: The World Bank.
  • Shen, W. and Kirkner, D., 2001. Non-linear finite-element analysis to predict permanent deformations in pavement structures under moving loads. International Journal of Pavement Engineering, 2 (3), 187–199. doi:10.1080/10298430108901726.
  • Theyse, H.L, 2002. Stiffness, strength and performance of unbound aggregate material: application of South African HVS and laboratory results of California flexible pavements ( Report for the California pavement research program). Richmond, VA: University of California, Pavement Research Center.
  • Thorbjorg, S. and Sigurdur, E., 2013. Water impact on the behavior of flexible pavement structures in an accelerated test. Road Materials and Pavement Design, 14 (2), 256–277. doi:10.1080/14680629.2013.779308.
  • Trejos-Castillo, C., et al., 2018. Costa Rica’s mechanical empirical design software for flexible pavements, CRME. Transportation research board 97th annual meeting, Washington D.C.
  • Ullidtz, P., 1987. Pavement analysis. Development in civil engineering, Vol. 19. Amsterdam: Elsevier.
  • Uzan, J., 2003. Characterization of asphalt concrete materials for permanent deformation. International Journal of Pavement Engineering, 4 (2), 77–86. doi:10.1080/10298430310001593272.
  • Žák, J., Monismith, C., and Jarušková, D., 2015. Consideration of fatigue resistance tests variability in pavement design methodology. International Journal of Pavement Engineering, 16 (1), 91–96. doi:10.1080/10298436.2014.942858.
  • Zhou, F. and Scullion, T., 2002. Discussion: three stages of permanent deformation curve and rutting model. International Journal of Pavement Engineering, 3 (4), 251–260. doi:10.1080/1029843021000083676.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.