349
Views
2
CrossRef citations to date
0
Altmetric
Articles

Multi-physics modelling of piezoelectric pavement system for energy harvesting under traffic loading

, ORCID Icon, , &
Pages 3647-3661 | Received 16 Jun 2020, Accepted 02 Apr 2021, Published online: 19 Apr 2021

References

  • Berger, H., et al., 2005. An analytical and numerical approach for calculating effective material coefficients of piezoelectric fiber composites. International Journal of Solids and Structures, 42 (21–22), 5692–5714. doi: 10.1016/j.ijsolstr.2005.03.016
  • Chen, J.Q., et al., 2016. Evaluation of pavement responses and performance with thermal modified asphalt mixture. Materials and Design, 111, 88–97. doi: 10.1016/j.matdes.2016.08.085
  • Cho, Y.H., Park, D.W., and Hwang, S.D, 2010. A predictive equation for dynamic modulus of asphalt mixtures used in Korea. Construction and Building Materials, 24 (4), 513–519. doi: 10.1016/j.conbuildmat.2009.10.008
  • COMSOL. 2012. COMSOL Multiphysics reference guide. http://www.lmn.pub.ro/~daniel/ElectromagneticModelingDoctoral/Books/COMSOL4.3/mph/COMSOLMultiphysicsReferenceGuide.pdf [accessed May 2019].
  • Deraemaeker, A., et al., 2009. Mixing rules for the piezoelectric properties of macro fiber composites. Journal of Intelligent Material Systems and Structures, 20 (12), 1475–1482. doi: 10.1177/1045389X09335615
  • García, Á., et al., 2009. Electrical conductivity of asphalt mortar containing conductive fibers and fillers. Construction and Building Materials, 23, 3175–3181. doi: 10.1016/j.conbuildmat.2009.06.014
  • Garcia, J. and Hansen, K., 2002. HMA pavement mix type selection guide. National Asphalt Pavement Association. Lanham.
  • Gudipudi, P., and Underwood, B, 2015. Testing and modeling of fine aggregate matrix and its relationship to asphalt concrete mix. Transportation Research Record, 2507, 120–127. doi: 10.3141/2507-13
  • Guo, L., and Lu, Q, 2017a. Potential of piezoelectric and thermoelectric technologies for harvesting energy from pavements. Renewable and Sustainable Energy Review, 72, 761–773. doi: 10.1016/j.rser.2017.01.090
  • Guo, L., and Lu, Q, 2017b. Modeling a new energy harvesting pavement system with experimental verification. Applied Energy, 208, 1071–1082. doi: 10.1016/j.apenergy.2017.09.045
  • Huang, B., Chen, X., and Shu, X, 2009. Effects of electrically conductive additives on laboratory-measured properties of asphalt mixtures. Journal of Materials in Civil Engineering, 21, 612–617. doi: 10.1061/(ASCE)0899-1561(2009)21:10(612)
  • Jasim, A., et al., 2017. Optimized design of layered bridge transducer for piezoelectric energy harvesting from roadway. Energy, 141, 1133–1145. doi: 10.1016/j.energy.2017.10.005
  • Jasim, A., et al., 2018. Laboratory testing and numerical simulation of piezoelectric energy-harvester for roadway applications. Applied Energy, 224, 438–447. doi: 10.1016/j.apenergy.2018.05.040
  • Jasim, A.F., et al., 2019. Performance analysis of piezoelectric energy harvesting in pavement: laboratory testing and field simulation. Transportation Research Record, 2673, 115–124. doi: 10.1177/0361198119830308
  • Jung, I., et al., 2017. Flexible piezoelectric polymer-based energy harvesting system for roadway applications. Applied Energy, 197, 222–229. doi: 10.1016/j.apenergy.2017.04.020
  • Kuang, Y., and Zhu, M.L, 2019. Evaluation and validation of equivalent properties of macro fibre composites for piezoelectric transducer modelling. Composite Part B: Engineering, 158, 189–197. doi: 10.1016/j.compositesb.2018.09.068
  • Liu, P.F., et al., 2019. Numerical study on influence of piezoelectric energy harvester on asphalt pavement structural responses. Journal of Materials in Civil Engineering, 21 (3), 04019008. doi: 10.1061/(ASCE)MT.1943-5533.0002640
  • Loulizi, A., et al., 2006. Comparing resilient modulus and dynamic modulus of hot-mix asphalt as material properties for flexible pavement design. Transportation Research Record, 1970, 161–170. doi: 10.1177/0361198106197000117
  • Roshani, H., et al., 2016. Energy harvesting from asphalt pavement roadways vehicle-induced stresses: a feasibility study. Applied Energy, 182, 210–218. doi: 10.1016/j.apenergy.2016.08.116
  • Roshani, H., et al., 2018. Theoretical and experimental evaluation of two roadway piezoelectric-based energy harvesting prototypes. Journal of Materials in Civil Engineering, 30 (2), 04017264. doi: 10.1061/(ASCE)MT.1943-5533.0002112
  • Shang, J., and Umana, J.A, 1999. Dielectric constant and relaxation time of asphalt pavement materials. Journal of Infrastructure Systems, 5, 135–142. doi: 10.1061/(ASCE)1076-0342(1999)5:4(135)
  • Shin, Y., et al., 2018. Piezoelectric polymer-based roadway energy harvesting via displacement amplification module. Applied Energy, 216, 741–750. doi: 10.1016/j.apenergy.2018.02.074
  • Wang, H., et al., 2016. Electrical and mechanical properties of asphalt concrete containing conductive fibers and fillers. Construction and Building Materials, 122, 184–190. doi: 10.1016/j.conbuildmat.2016.06.063
  • Wang, C.H., et al., 2018. Optimization design and experimental investigation of piezoelectric energy harvesting devices for pavement. Applied Energy, 229, 18–30. doi: 10.1016/j.apenergy.2018.07.036
  • Wang, C.H., et al., 2019. Applicability evaluation of embedded piezoelectric energy harvester applied in pavement structures. Applied Energy, 251, 113383. doi: 10.1016/j.apenergy.2019.113383
  • Wang, H., and Al-Qadi, I.L, 2009. Combined effect of moving wheel loading and three-dimensional contact stresses on perpetual pavement responses. Transportation Research Record, 2095, 53–61. doi: 10.3141/2095-06
  • Wang, H., Jasim, A., and Chen, X, 2018. Energy harvesting technologies in roadway and bridge for different applications – A comprehensive review. Applied Energy, 212, 1083–1094. doi: 10.1016/j.apenergy.2017.12.125
  • Wu, S., et al., 2005. Investigation of the conductivity of asphalt concrete containing conductive fillers. Carbon, 43, 1358–1363. doi: 10.1016/j.carbon.2004.12.033
  • Xiang, T., et al., 2020. Detection of moving load on pavement using piezoelectric sensors. Sensors, 20 (8), 2366. doi: 10.3390/s20082366
  • Xiong, H., and Wang, L, 2016. Piezoelectric energy harvester for public roadway: On-site installation and evaluation. Applied Energy, 174, 101–107. doi: 10.1016/j.apenergy.2016.04.031
  • Yang, H.L., et al., 2017. Development in stacked-array-type piezoelectric energy harvester in asphalt pavement. Journal of Materials in Civil Engineering, 29 (11), 04017224. doi: 10.1061/(ASCE)MT.1943-5533.0002079
  • Zhang, J.P., et al., 2019. Prediction of dynamic modulus of asphalt mixture using micromechanical method with radial distribution functions. Materials and Structures, 52 (2), 49. doi: 10.1617/s11527-019-1348-7
  • Zhang, Y., et al., 2020. Piezoelectric energy harvesting from roadway deformation under various traffic flow conditions. Journal of Intelligent Material Systems and Structures, 31 (15), 1751–1762. doi: 10.1177/1045389X20930089
  • Zhao, H., Qin, L., and Ling, J, 2018. Synergistic performance of piezoelectric transducers and asphalt pavement. International Journal of Pavement Research and Technology, 11 (4), 381–387. doi: 10.1016/j.ijprt.2017.09.008
  • Zhao, J.N., and Wang, H, 2020. Mechanistic modeling and economic analysis of piezoelectric energy harvesting potential in airport pavements. Transportation Research Record, 2674 (11), 177–188. doi: 10.1177/0361198120942503
  • Zhao, H., Yu, J., and Ling, J, 2010. Finite element analysis of cymbal piezoelectric transducers for harvesting energy from asphalt pavement. Journal of the Ceramic Society of Japan, 118 (1382), 909–915. doi: 10.2109/jcersj2.118.909

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.