507
Views
4
CrossRef citations to date
0
Altmetric
Articles

Effect of glass fibers and waste engine oil on the properties of RAP asphalt concretes

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 5227-5238 | Received 29 Apr 2021, Accepted 30 Oct 2021, Published online: 14 Dec 2021

References

  • Aashto-T283, 2007. Standard method of test for resistance of compacted asphalt mixtures to moisture-induced damage. Washington, DC, USA: AASHTO Provisional Standards.
  • Aashto-T319, 2008. Standard method of test for quantitative extraction and recovery of asphalt binder from asphalt mixtures. Washington, DC, USA: AASHTO.
  • Al-Mutlaq, S., et al., 2019. Effect of chlorination on the assessment of waste engine oil modified asphalt binders. Petroleum Science and Technology, 37, 617–628. doi:10.1080/10916466.2018.1560320.
  • Al-Qadi, I. L., et al., 2009. Investigation of working binder In hot-mix asphalt containing recycled asphalt pavements. Washington, DC: Transportation Research Board 88th Annual Meeting, Transportation Research Board.
  • Al-Qadi, I. L., et al., 2012. Impact of high RAP contents on structural and performance properties of asphalt mixtures.
  • Al-Qadi, I. L., Elseifi, M., and Carpenter, S. H., 2007. Reclaimed asphalt pavement—a literature review.
  • Al-Saffar, Z. H., et al., 2020. The tailored traits of reclaimed asphalt pavement incorporating maltene: performance analyses. International Journal of Pavement Engineering, 1–14. doi:10.1080/10298436.2020.1824294.
  • Al-Saffar, Z. H., et al., 2021. A review on the usage of waste engine oil with aged asphalt as a rejuvenating agent. Materials Today: Proceedings, 42, 2374–2380. doi:10.1016/j.matpr.2020.12.330.
  • Ali, A. W., et al., 2016. Investigation of the impacts of aging and RAP percentages on effectiveness of asphalt binder rejuvenators. Construction and Building Materials, 110, 211–217. doi:10.1016/j.conbuildmat.2016.02.013.
  • Arshad, A. K., et al., 2017. Marshall properties and rutting resistance of hot mix asphalt with variable reclaimed asphalt pavement (RAP) content. IOP Conf. Ser.: Mater. Sci. Eng., 271 (012078), 1–6. doi:10.1088/1757-899X/271/1/012078.
  • Arshad, A. K., et al., 2018. Performance Evaluation of Hot Mix asphalt with different proportions of RAP content. E3S Web Conf., 34 (01026), 1–8. doi:10.1051/e3sconf/20183401026.
  • ASTM-D1856-09, 2009. Standard test method for recovery of asphalt from solution by abson method. ASTM International, West Conshohocken, PA, www.astm.org.
  • ASTM-D4867/D4867m-09, 2009. Standard test method for effect of moisture on asphalt concrete paving mixtures. ASTM International, West Conshohocken, PA, www.astm.org Conshohocken, PA, www.astm.org.
  • ASTM-D4867/D4867m-09, 2014. Standard test method for effect of moisture on asphalt concrete paving mixtures. West Conshohocken, PA: ASTM International.
  • Bai, T., et al., 2020. Rejuvenation of short-term aged asphalt-binder using waste engine oil. Canadian Journal of Civil Engineering, 47, 822–832. doi:10.1139/cjce-2019-0268.
  • Behbahani, H., et al., 2020. Evaluation of fatigue and rutting behaviour of Hot Mix asphalt containing rock wool. International Journal of Civil Engineering, 18, 1293–1300. doi:10.1007/s40999-020-00532-5.
  • Behbahani, H., Ayazi, M. J., and Moniri, A, 2017. Laboratory investigation of rutting performance of warm mix asphalt containing high content of reclaimed asphalt pavement. Petroleum Science and Technology, 35, 1556–1561. doi:10.1080/10916466.2017.1316738.
  • Cavalli, M. C., et al., 2018. Aging effect on rheology and cracking behaviour of reclaimed binder with bio-based rejuvenators. Journal of Cleaner Production, 189, 88–97. doi:10.1016/j.jclepro.2018.03.305.
  • Cooper, S. B., et al., 2017. Laboratory performance of asphalt mixtures containing recycled asphalt shingles, reclaimed asphalt pavement, and Recycling agents. Journal of Materials in Civil Engineering, 29 (3), D4016001. doi:10.1061/(ASCE)MT.1943-5533.0001658.
  • Daryaee, D., et al., 2020. Utilizing of waste polymer modified bitumen In combination with rejuvenator In high reclaimed asphalt pavement mixtures. Construction and Building Materials, 235 (117516), 1–13. doi:10.1016/j.conbuildmat.2019.117516.
  • Debbarma, S., et al., 2020. Utilization of industrial and agricultural wastes for productions of sustainable roller compacted concrete pavement mixes containing reclaimed asphalt pavement aggregates. Resources, Conservation and Recycling, 152 (104504), 1–14. doi:10.1016/j.conbuildmat.2019.117516.
  • Devulapalli, L., et al., 2020. Effect of rejuvenating agents on stone matrix asphalt mixtures incorporating RAP. Construction and Building Materials, 254 (119298), 1–12. doi:10.1016/j.conbuildmat.2020.119298.
  • Devulapalli, L., et al., 2020. Microstructural characterisation of reclaimed asphalt pavement with rejuvenators. International Journal of Pavement Engineering, 1–12. doi:10.1080/10298436.2020.1788027.
  • Dinis-Almeida, M., et al., 2016. Performance of warm Mix recycled asphalt containing up to 100% RAP. Construction and Building Materials, 112, 1–6. doi:10.1016/j.conbuildmat.2016.02.108.
  • Eisa, M. S., Basiouny, M. E., and Daloob, M. I, 2020. Effect of adding glass fiber on the properties of asphalt mix. International Journal of Pavement Research and Technology, 14, 403–409. doi:10.1007/s42947-020-0072-6.
  • Enieb, M., et al., 2021. Short- and long-term properties of glass fiber reinforced asphalt mixtures. International Journal of Pavement Engineering, 22 (1), 64–76. doi:10.1080/10298436.2019.1577421.
  • Fakhri, M., and Hosseini, S. A, 2017. Laboratory evaluation of rutting and moisture damage resistance of glass fiber modified warm mix asphalt incorporating high RAP proportion. Construction and Building Materials, 134, 626–640. doi:10.1016/j.conbuildmat.2016.12.168.
  • Fu, Z., et al., 2017. Laboratory evaluation of pavement performance using modified asphalt mixture with a new composite reinforcing material. International Journal of Pavement Research and Technology, 10, 507–516. doi:10.1016/j.ijprt.2017.04.001.
  • Guo, M., et al., 2020. Effect of WMA-RAP technology on pavement performance of asphalt mixture: A state-of-the-art review. Journal of Cleaner Production, 266 (121704), 1–8. doi:10.1016/j.jclepro.2020.121704.
  • Guo, Q., et al., 2021. Influence of basalt fiber on mode I and II fracture properties of asphalt mixture at medium and low temperatures. Theoretical and Applied Fracture Mechanics, 112, 102884.
  • Hasan, U., et al., 2020. Life cycle assessment of roadworks in United Arab Emirates: recycled construction waste, reclaimed asphalt pavement, warm-mix asphalt and blast furnace slag use against traditional approach. Journal of Cleaner Production, 257 (120531), 1–16. doi:10.1016/j.jclepro.2020.120531.
  • Karimi, M. M., et al., 2017. Development of a stress-mode sensitive viscoelastic constitutive relationship for asphalt concrete: experimental and numerical modeling. Mechanics of Time-Dependent Materials, 21, 383–417. doi:10.1007/s11043-016-9335-7.
  • Karimi, M. M., et al., 2019. Effect of steel wool fibers on mechanical and induction heating response of conductive asphalt concrete. International Journal of Pavement Engineering, 21, 1755–1768. doi:10.1080/10298436.2019.1567918.
  • Khan, Md Z.H., et al., 2021. Performance of high content reclaimed asphalt pavement (RAP) In asphaltic Mix with crumb rubber modifier and waste Engine Oil as rejuvenator. Applied Sciences, 11 (5226), 1–16. doi:10.3390/app11115226.
  • Lavasani, M., Latifi Namin, M., and Fartash, H, 2015. Experimental investigation on mineral and organic fibers effect on resilient modulus and dynamic creep of stone matrix asphalt and continuous graded mixtures In three temperature levels. Construction and Building Materials, 95, 232–242. doi:10.1016/j.conbuildmat.2015.07.146.
  • Li, Z., et al., 2020. Effect of basalt fiber on the low-temperature performance of an asphalt mixture in a heavily frozen area. Construction and Building Materials, 253 (119080), 1–9. doi:10.1016/j.conbuildmat.2020.119080.
  • Liu, Q., et al., 2017. Research on the Mechanical, Thermal, Induction Heating and Healing Properties of Steel Slag/Steel Fibers Composite Asphalt Mixture. Applied Sciences, 7 (1088), 1–13. doi:10.3390/app7101088.
  • Luo, D., et al., 2019. The performance of asphalt mixtures modified with lignin fiber and glass fiber: A review. Construction and Building Materials, 209, 377–387. doi:10.1016/j.conbuildmat.2019.03.126.
  • Lv, Q., et al., 2019. Investigation of the rutting performance of various modified asphalt mixtures using the Hamburg wheel-tracking device test and multiple stress creep recovery test. Construction and Building Materials, 206, 62–70. doi:10.1016/j.conbuildmat.2019.02.015.
  • Mamun, A. A., 2018. Evaluation of waste engine oil-rejuvenated asphalt concrete mixtures with high RAP content. Advances in Materials Science and Engineering, 2018 (7386256), 1–8. doi:10.1155/2018/7386256.
  • Mamun, A. A., et al., 2020. Comparative Evaluation of waste cooking Oil and waste Engine Oil rejuvenated asphalt concrete mixtures. Arabian Journal for Science and Engineering, 45, 7987–7997. doi:10.1007/s13369-020-04523-5.
  • Mogawer, W. S., et al., 2013. Evaluating the effect of rejuvenators on the degree of blending and performance of high RAP. RAS, and RAP/RAS Mixtures. Road Materials and Pavement Design, 14, 193–213. doi:10.1080/14680629.2013.812836.
  • Mogawer, W. S., et al., 2015. Ageing and rejuvenators: evaluating their impact on high RAP mixtures fatigue cracking characteristics using advanced mechanistic models and testing methods. Road Materials and Pavement Design, 16, 1–28. doi:10.1080/14680629.2015.1076996.
  • Moghadas Nejad, F., et al., 2014. Rutting performance prediction of warm mix asphalt containing reclaimed asphalt pavements. Road Materials and Pavement Design, 15, 207–219. doi:10.1080/14680629.2013.868820.
  • Moniri, A., et al., 2019. Laboratory study of the effect of oil-based recycling agents on high RAP asphalt mixtures. International Journal of Pavement Engineering, 22 (11), 1–12. doi:10.1080/10298436.2019.1696461.
  • Morea, F., and Zerbino, R, 2018. Improvement of asphalt mixture performance with glass macro-fibers. Construction and Building Materials, 164, 113–120. doi:10.1016/j.conbuildmat.2017.12.198.
  • Noorvand, H., et al., 2020. Evaluating interaction of fibre reinforcement mechanism with mesostructure of asphalt concrete. International Journal of Pavement Engineering, 1–18. doi:10.1080/10298436.2020.1813286.
  • Park, K. S., et al., 2020. Strengthening of hybrid glass fiber reinforced recycled hot-mix asphalt mixtures. Construction and Building Materials, 258 (118947), 1–10. doi:10.1016/j.conbuildmat.2020.118947.
  • Pradhan, S. K., et al., 2020. Influence of softer binder and rejuvenator on bituminous mixtures containing reclaimed asphalt pavement (RAP) material. International Journal of Transportation Science and Technology, 1–14. doi:10.1016/j.ijtst.2020.12.001.
  • Rochishnu, E., Ramesh, A., and Venkat Ramayya, V, 2021. Sustainable pavement technologies - performance of high RAP In WMA surface mixture containing nano glass fibers. Materials Today: Proceedings, 43, 1009–1017. doi:10.1016/j.matpr.2020.07.643.
  • Shafabakhsh, G., and Tanakizadeh, A, 2016. Evaluation of resilient behavior of flexible pavement asphalt layers. Materials and Structures, 49, 2829–2840. doi:10.1617/s11527-015-0689-0.
  • Shu, X., et al., 2012. Laboratory evaluation of moisture susceptibility of foamed warm mix asphalt containing high percentages of RAP. Construction and Building Materials, 35, 125–130. doi:10.1016/j.conbuildmat.2012.02.095.
  • Silva, H. M. R. D., Oliveira, J. R. M., and Jesus, C. M. G, 2012. Are totally recycled hot mix asphalts a sustainable alternative for road paving? Resources, Conservation and Recycling, 60, 38–48. doi:10.1016/j.resconrec.2011.11.013.
  • Slebi-Acevedo, C. J., et al., 2020. An experimental laboratory study of fiber-reinforced asphalt mortars with polyolefin-aramid and polyacrylonitrile fibers. Construction and Building Materials, 248 (118622), 1–11. doi:10.1016/j.conbuildmat.2020.118622.
  • Tran, N., et al., 2017. Effect of rejuvenator on performance characteristics of high RAP mixture. Road Materials and Pavement Design, 18, 183–208. doi:10.1080/14680629.2016.1266757.
  • Xiao, F., et al., 2019. Performance grades, environmental and economic investigations of reclaimed asphalt pavement materials. Journal of Cleaner Production, 211, 1299–1312. doi:10.1016/j.jclepro.2018.11.126.
  • Xiao, F., and Amirkhanian, S. N, 2009. Laboratory investigation of utilizing high percentage of RAP In rubberized asphalt mixture. Materials and Structures, 43, 223–233. doi:10.1617/s11527-009-9483-1.
  • Xiao, F., and Amirkhanian, S. N, 2011. Resilient modulus behavior of rubberized asphalt concrete mixtures containing reclaimed asphalt pavement. Road Materials and Pavement Design, 9, 633–649. doi:10.1080/14680629.2008.9690142.
  • Yan, Y., et al., 2017. Evaluation of cracking performance for polymer-modified asphalt mixtures with high RAP content. Road Materials and Pavementj Design, 18, 450–470. doi:10.1080/14680629.2016.1266774.
  • Yin, F., et al., 2018. Refining the indirect tensile (IDT) nflex factor test to evaluate cracking resistance of asphalt mixtures for mix design and quality assurance. Construction and Building Materials, 172, 396–405. doi:10.1016/j.conbuildmat.2018.03.251.
  • Zaumanis, M., Cavalli, M. C., and Poulikakos, L. D, 2020. Effect of rejuvenator addition location In plant on mechanical and chemical properties of RAP binder. International Journal of Pavement Engineering, 21, 507–515. doi:10.1080/10298436.2018.1492133.
  • Zeng, M., et al., 2007. Effects of RAP Content on Performance of Cold Reclaimed Asphalt Mixture. Journal of Central South Highway Engineering, (121369).
  • Zhang, X., et al., 2018. Mechanism and behavior of fiber-reinforced asphalt mastic at high temperature. International Journal of Pavement Engineering, 19, 407–415. doi:10.1080/10298436.2017.1402597.
  • Zhang, Y., et al., 2021. Effects of recycling agents (RAs) on rutting resistance and moisture susceptibility of mixtures with high RAP/RAS content. Construction and Building Materials, 270 (121369), 1–9. doi:10.1016/j.conbuildmat.2020.121369.
  • Ziari, H., et al., 2020. Crack resistance of hot mix asphalt containing different percentages of reclaimed asphalt pavement and glass fiber. Construction and Building Materials, 230 (117015), 1–10. doi:10.1016/j.conbuildmat.2019.117015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.