842
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Significance of eigenstresses and curling stresses for total thermal stresses in a concrete slab, as a function of subgrade stiffness

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, & ORCID Icon show all
Article: 2091136 | Received 20 Jan 2022, Accepted 10 Jun 2022, Published online: 05 Jul 2022

References

  • Armaghani J., Larsen T., and Smith L., 1987. Temperature response of concrete pavements. Transportation Research Record, 1121, 23–33.
  • Ausweger M., et al., 2019. Early-age evolution of strength, stiffness, and non-aging creep of concretes: experimental characterization and correlation analysis. Materials, 12 (2), 207.
  • Barber E., 1957. Calculation of maximum pavement temperatures from weather reports. Highway Research Board Bulletin, 168, 1–8.
  • Barré de Saint-Venant A.J.C., 1855. Mémoire sur la torsion des prismes [essay on twisting prisms], mémoire des savant étrangers [essays of foreign scholars]. Comptes Rendues De L'Académie Des Sciencies, 14, 233–560.
  • Bayraktarova K., et al., 2021. Characterisation of the climatic temperature variations in the design of rigid pavements. International Journal of Pavement Engineering, 1–14. doi: 10.1080/10298436.2021.1887486.
  • Bažant Z., et al., 2015. RILEM draft recommendation: TC-242-MDC multi-decade creep and shrinkage of concrete: material model and structural analysis. Materials and Structures, 48, 753–770.
  • Bentz D.P., 2000. A computer model to predict the surface temperature and time-of-wetness of concrete pavements and bridge decks. National Institute of Standards and Technology – Technology Administration, U.S. Department of Commerce.
  • Bradbury R.D., 1938. Reinforced concrete pavements. University of Wisconsin – Madison: Wire Reinforcement Institute.
  • Ceylan H., et al., 2016. Impact of curling and warping on concrete pavement. Program for Sustainable Pavement Engineering and Research. Ames, IA: Institute for Transportation, Iowa State University.
  • Choubane B., and Tia M., 1992. Nonlinear temperature gradient effect on maximum warping stresses in rigid pavements. Transportation Research Record, 1370, 11–19.
  • Choubane B., and Tia M., 1995. Analysis and verification of thermal-gradient effects on concrete pavement. Journal of Transportation Engineering, 121 (1), 75–81.
  • Díaz Flores R., et al., 2021. Multi-directional falling weight deflectometer (FWD) testing and quantification of the effective modulus of subgrade reaction for concrete roads. International Journal of Pavement Engineering, 1–19. doi: 10.1080/10298436.2021.2006651.
  • Dlubal Software GmbH, 2020. RFEM – FEM structural analysis software.
  • Hiller J.E., and Roesler J.R., 2010. Simplified nonlinear temperature curling analysis for jointed concrete pavements. Journal of Transportation Engineering, 136, 654–663.
  • Höller R., et al., 2019. Rigorous amendment of vlasov's theory for thin elastic plates on elastic winkler foundations, based on the principle of virtual power. European Journal of Mechanics/ A Solids, 73, 449–482.
  • Ioannides A.M., and Khazanovich L., 1998. Nonlinear temperature effects on multilayered concrete pavements. Journal of Transportation Engineering, 124, 128–136.
  • Janssen D.J., and Snyder M.B., 2000. Temperature-moment concept for evaluating pavement temperature data. Journal of Infrastructure Systems, 6, 81–83.
  • Khazanovich L., 1994. Structural analysis of multi-layered concrete pavement systems. Thesis (PhD). University of Illinois at Urbana-Champaign.
  • Khazanovich L., et al., 2001. Development of rapid solutions for prediction of critical continuously reinforced concrete pavement stresses. Transportation Research Record, 1778, 64–72.
  • Kuo C.M., Hall K.T., and Darter M.I., 1995. Three-dimensional finite element model for analysis of concrete pavement support. Transportation Research Record, 1505, 119–127.
  • Liang S., and Wei Y., 2018. Modelling of creep effect on moisture warping and stress developments in concrete pavement slabs. International Journal of Pavement Engineering, 19 (5), 429–438.
  • Louhghalam A., Petersen T., and Ulm F.J., 2018. Translating environmentally-induced eigenstresses to risk of fracture for design of durable concrete pavements. Computational modelling of concrete structures. CRC Press, 265–273.
  • Mang H.A., and Hofstetter G., 2013. Festigkeitslehre. 4th ed., Springer Vieweg.
  • Martin U., et al., 2016. Abschätzung der Untergrundverhältnisse am Bahnkörper anhand des Bettungsmoduls [in German]. ETR-Eisenbahntechnische Rundschau, 5, 50–57.
  • MEPDG, 2008. Mechanistic-empirical pavement design guide: a manual of practice. AASHTO.
  • Mohamed A.R., and Hansen W., 1997. Effect of nonlinear temperature gradient on curling stress in concrete pavements. Transportation Research Record, 1568, 65–71.
  • Murthy V., 2011. Textbook of soil mechanics and foundation engineering. CBS Publisher & Distributors/Alkem Company (S).
  • NCHRP, 2004. Guide for mechanistic-empirical design of new and rehabilitated pavement structures. Transportation Research Board. Washington, DC, USA, ARA, Inc., ERES Division, 505 West University Avenue, Champaign, Illinois 61820. Project 1-37A.
  • Neville A.M., 1995. Properties of concrete. Vol. 4, London: Longman.
  • Qin Y., 2016. Pavement surface maximum temperature increases linearly with solar absorption and reciprocal thermal inertial. International Journal of Heat and Mass Transfer, 97, 391–399.
  • Sarkar A., and Norouzi R., 2020. Evaluating curling stress of continuous reinforced concrete pavement. ACI Structural Journal, 117 (1), 53–62.
  • Sen S., and Khazanovich L., 2021. Reconsidering the strength of concrete pavements. International Journal of Pavement Engineering, 1–11. doi: 10.1080/10298436.2021.2020270.
  • Siddique Z.Q., Hossain M., and Meggers D., 2005. Temperature and curling measurements on concrete pavement. Proceedings of the Mid-Continent Transportation Research Symposium 2005. Ames, Iowa, USA. Ames, Iowa, USA, 1–12.
  • Sii H. B., et al., 2014. Development of prediction model for doweled joint concrete pavement using three-dimensional finite element analysis. Applied Mechanics and Materials, 587, 1047–1057.
  • Tabatabaie A.M., and Barenberg E.J., 1978. Finite-element analysis of jointed or cracked concrete pavements. Transportation Research Record, 671, 11–19.
  • Teller L., and Sutherland C., 1935. The structural design of concrete pavements; parts 1+2. Division of Tests, Bureau of Public Roads, 16 (8-9), 145–189.
  • Thomlinson J., 1940. Temperature variations and consequent stresses produced by daily and seasonal temperature cycles in concrete slabs. Concrete Constructional Engineering, 36 (6), 298–307.
  • Time & Date, A, 2020. Wetterrückblick für Bad Vöslau, Niederösterreich, Österreich – Oktober 2015. Available from: https://www.timeanddate.de/wetter/oesterreich/bad-voeslau/rueckblick?month=10&year=2015. [Accessed 1 March 2022].
  • Wang H., et al., 2019a. Concrete pavements subjected to hail showers: A semi-analytical thermoelastic multiscale analysis. Engineering Structures, 200, 109677.
  • Wang H., et al., 2019b. Multiscale thermoelastic analysis of the thermal expansion coefficient and of microscopic thermal stresses of mature concrete. Materials, 12 (17), 2689.
  • Wei Y., et al., 2019. Nonlinear strain distribution in a field-instrumented concrete pavement slab in response to environmental effects. Road Materials and Pavement Design, 20 (2), 367–380.
  • Wei Y., Liang S., and Gao X., 2017. Numerical evaluation of moisture warping and stress in concrete pavement slabs with different water-to-cement ratio and thickness. Journal of Engineering Mechanics, 143 (2), 04016111.
  • Westergaard H., 1927. Analysis of stresses in concrete pavements due to variations of temperature. Highway Research Board Proceedings, 6, 201–215.
  • Winkler E., 1867. Die Lehre von der Elastizität und Festigkeit: Mit besonderer Rücksicht auf ihre Anwendung in der Technik; für polytechnische Schulen, Bauakademien, Ingenieure, Maschinenbauer, Architekten etc. [Lessons on elasticity and strength of materials: with special consideration of their application in technology; for polytechnical schools, building academies, engineers, mechanical engineers, architects, etc]. Dominicus.
  • Yu H.T., Khazanovich L., and Darter M.I., 2004. Consideration of JPCP curling and warping in the 2002 design guide. CD-ROM Proceedings of the 83rd Annual Meeting of the Transportation Research Board.
  • Zhang J., et al., 2003. Model for nonlinear thermal effect on pavement warping stresses. Journal of Transportation Engineering, 129 (6), 695–702.