134
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Collective influence of autonomous trucks and climate change on asphalt concrete pavement performance

ORCID Icon, , &
Article: 2268792 | Received 21 Feb 2023, Accepted 03 Oct 2023, Published online: 27 Oct 2023

References

  • AASHTO, 2020. Mechanistic-empirical pavement design guide: A manual of practice. Washington, DC: American Association of State Highway and Transportation Officials.
  • ARA Inc, 2004. Guide for mechanistic-empirical design. Washington, DC: National Cooperative Highway Research Program.
  • Blab, R., and Litzjw, J., 1995. Measurements of the lateral distribution of heavy vehicles and its effects on the design of road pavements. In: Proceedings of the international symposium on heavy vehicle weights and dimensions, road transport technology, University of Michigan, 389–396.
  • Buiter, R., et al., 1989. Effects of transverse distribution of heavy vehicles on thickness design of full-depth asphalt pavements. Transportation Research Record, 1227, 66–74.
  • Cao, Z., and Xue, H., 2012. United States Patent : 6599524 United States Patent : 6599524. Available from: https://patents.google.com/patent/US8202916?oq=Preparing+synthetic+fuels+constituted+of+hydrocarbons+partially+oxygenated+comprises+subjecting+reaction+gas+mixture+containing+carbon+and+hydrogen+to+electric+discharge+inside+reaction+chamber+and+cooling+an.
  • Chen, F., et al., 2019. Assess the impacts of different autonomous trucks’ lateral control modes on asphalt pavement performance. Transportation Research Part C: Emerging Technologies, 103, 17–29. doi:10.1016/j.trc.2019.04.001. Elsevier.
  • Chen, F., Song, M., and Ma, X., 2020. A lateral control scheme of autonomous vehicles considering pavement sustainability. Journal of Cleaner Production, 256, 120669. doi:10.1016/j.jclepro.2020.120669. Elsevier Ltd.
  • Erlingsson, S., 2012. Rutting development in a flexible pavement structure. Road Materials and Pavement Design, 13 (2), 218–234. doi:10.1080/14680629.2012.682383.
  • Georgouli, K., and Plati, C., 2022. Autonomous trucks’(ATs) lateral distribution and asphalt pavement performance. International Journal of Pavement Engineering, 1–22. doi:10.1080/10298436.2022.2046274.
  • Georgouli, K., Plati, C., and Loizos, A., 2021. Autonomous vehicles wheel wander: Structural impact on flexible pavements. Journal of Traffic and Transportation Engineering (English Edition), 8 (3), 388–398. doi:10.1016/j.jtte.2021.04.002.
  • Ghao, L., Hong, F., and Ren, Y., 2019. Impact of seasonal and annual weather variations on network-level pavement performance. Infrastructures, 4 (27), 1–13.
  • Gudipudi, P. P., Underwood, B. S., and Zalghout, A., 2017. Impact of climate change on pavement structural performance in the United States. Transportation Research Part D: Transport and Environment, 57, 172–184. doi:10.1016/j.trd.2017.09.022.
  • Gungor, O. E., and Al-Qadi, I. L., 2020. All for one: centralized optimization of truck platoons to improve roadway infrastructure sustainability. Transportation Research Part C: Emerging Technologies, 114 (August 2019), 84–98. doi:10.1016/j.trc.2020.02.002. Elsevier.
  • Gungor, O. E., and Al-Qadi, I. L., 2022. Wander 2D: a flexible pavement design framework for autonomous and connected trucks. International Journal of Pavement Engineering, 23 (1), 121–136. doi:10.1080/10298436.2020.1735636. Taylor & Francis.
  • Haslett, K. E., et al., 2021. Climate change impacts on flexible pavement design and rehabilitation practices. Road Materials and Pavement Design, 22 (9), 2098–2112. doi:10.1080/14680629.2021.1880468.
  • Kawa, I., Zhang, Z., and Hudson, W. R., 1998. Evaluation of the AASHTO 18-Kip load equivalency concept. Texas: Center for Transportation Research, Center for Transportation Research, Bureau of Engineering Research, University of Texas at Austin..
  • Knott, J. F., Jacobs, J. M., et al., 2019a. A framework for introducing climate-change adaptation in pavement management. Sustainability (Switzerland), 11(16), 4382. doi:10.3390/su11164382.
  • Knott, J. F., Sias, J. E., et al., 2019b. Seasonal and long-term changes to pavement life caused by rising temperatures from climate change. Transportation Research Record, 2673(6), 267–278. doi:10.1177/0361198119844249.
  • Linder, C., 2019. A self-driving freight truck just drove across the country to deliver butter. Popular Mechanics. Available from: https://www.popularmechanics.com/technology/infrastructure/a30196644/-self-driving-truck-cross-country/ [Accessed 15 Feb 2022].
  • Litman, T., 2020. Autonomous vehicle implementation predictions: implications for transport planning. Transportation Research Board Annual Meeting, 42 (5), 1–39. https://www.vtpi.org/avip.pdf.
  • Ministry of Transport Ontario, 2019. Ontario’s default parameters for AASHTOWare pavement ME design, interim report - 2019. Pavements & Foundations Section, Material Engineering Research Office, Ministry of Transportation, Ontario, Canada.
  • Noorvand, H., Karnati, G., and Underwood, B. S., 2017. Autonomous vehicles: assessment of the implications of truck positioning on flexible pavement performance and design. Transportation Research Record, 2640 (2018), 21–28. doi:10.3141/2640-03.
  • Okte, E., and Al-Qadi, I. L., 2022. Impact of autonomous and human-driven trucks on flexible pavement design. Transportation Research Record: Journal of the Transportation Research Board, 2676 (7), 144–160. doi:10.1177/03611981221077083.
  • Pacific Climate Impacts Consortium, University of Victoria, 2019. Statistically Downscaled Climate Scenarios. Available at: https://data.pacificclimate.org/portal/downscaled_gcms/map/ [27 March 2020].
  • Qiao, Y., et al., 2013. Examining effects of climatic factors on flexible pavement performance and service life. Transportation Research Record, 2349, 100–107. doi:10.3141/2349-12.
  • Qiao, Y., Santos, J., et al., 2020a. Climate change impacts on asphalt road pavement construction and maintenance: An economic life cycle assessment of adaptation measures in the State of Virginia, United States. Journal of Industrial Ecology, 24 (2), 342–355. doi:10.1111/jiec.12936.
  • Qiao, Y., Zhang, Y., et al., 2020b. Assessing impacts of climate change on flexible pavement service life based on falling weight deflectometer measurements. Physics and Chemistry of the Earth, 120, 102908. doi:10.1016/j.pce.2020.102908. Elsevier Ltd.
  • Rana, M. M., and Hossain, K., 2021. Impact of autonomous truck implementation: rutting and highway safety perspectives. Road Materials and Pavement Design, 23 (10), 2205–2226. doi:10.1080/14680629.2021.1963815.
  • Rana, M. M., and Hossain, K., 2022a. Connected and autonomous vehicles and infrastructures: A literature review. International Journal of Pavement Research and Technology, 0123456789. doi:10.1007/s42947-021-00130-1. Springer Singapore.
  • Rana, M. M., and Hossain, K., 2022b. Simulation of autonomous truck for minimizing asphalt pavement distresses. Road Materials and Pavement Design, 23 (6), 1266–1286. doi:10.1080/14680629.2021.1883469.
  • Shankar, P. R., and Lee, C. E., 1985. Lateral placement of truck wheels within highway lanes. Transportation Research Record, 1043, 33–39.
  • Siddharthan, R. V., et al., 2017. Investigation of impact of wheel wander on pavement performance. Road Materials and Pavement Design, 18 (2), 390–407. doi:10.1080/14680629.2016.1162730.
  • Stoner, A. M. K, et al., 2019. Quantifying the impact of climate change on flexible pavement performance and lifetime in the United States. Transportation Research Record, 2673 (1), 110–122. doi:10.1177/0361198118821877.
  • Swarna, S. T., et al., 2021. Assessing climate change impact on asphalt binder grade selection and its implications. Transportation Research Record, 2675 (10), 786–799. doi:10.1177/03611981211013026.
  • Swarna, S. T., et al., 2022a. Climate change adaptation strategies for Canadian asphalt pavements; part 1: adaptation strategies. Journal of Cleaner Production. Elsevier Ltd, 363, 132313. doi:10.1016/j.jclepro.2022.132313.
  • Swarna, S. T., and Hossain, K., 2022a. Asphalt binder selection for future Canadian climatic conditions using various pavement temperature prediction models. Road Materials and Pavement Design, 24 (2), 447–461. doi:10.1080/14680629.2021.2019093.
  • Swarna, S. T., and Hossain, K., 2022b. Climate change impact and adaptation for highway asphalt pavements: a literature review. Canadian Journal of Civil Engineering, 11 (7), 1109–1120. doi:10.1139/cjce-2021-0209.
  • Swarna, S. T., Rana, M. M., and Hossain, K., 2022b. Impact of climate change on pavement performance in Canada’s Newfoundland Island. International Journal of Pavement Research and Technology, 16, 1311–1326. doi:10.1007/s42947-022-00198-3.
  • Underwood, B. S., 2019. A method to select general circulation models for pavement performance evaluation. International Journal of Pavement Engineering, 0 (0), 1–13. doi:10.1080/10298436.2019.1580365. Taylor & Francis.
  • Yeganeh, A., Vandoren, B., and Pirdavani, A., 2021. Impacts of load distribution and lane width on pavement rutting performance for automated vehicles. International Journal of Pavement Engineering, 23 (12), 4125–4135. doi:10.1080/10298436.2021.1935938.
  • Yeganeh, A., Vandoren, B., and Pirdavani, A., 2022. Pavement rutting performance analysis of automated vehicles: impacts of wander mode, lane width, and market penetration rate. International Journal of Pavement Engineering, doi:10.1080/10298436.2022.2049264.
  • Zhao, X., Shen, A., and Ma, B., 2020. Temperature response of asphalt pavement to low temperatures and large temperature differences. International Journal of Advanced Structures & Geotechnical Engineering, 21 (1), 49–62. doi:10.1080/10298436.2018.1435883.
  • Zhou, F., et al., 2019. Optimization of lateral wandering of automated vehicles to reduce hydroplaning potential and to improve pavement life. Transportation Research Record, 2673 (11), 81–89. doi:10.1177/036119811985356.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.