303
Views
0
CrossRef citations to date
0
Altmetric
Articles

Reactivity of the Reward System in Artists During Acceptance and Rejection of Monetary Rewards

, , &

REFERENCES

  • Abraham, A. (2013). The promises and perils of the neuroscience of creativity. Frontiers Human Neuroscence, 7, 246. doi:10.3389/fnhum.2013.00246
  • Amabile, T. M., Hennessey, B. A., Grossman, B. S. (1986). Social influences on creativity: The effects of contracted-for reward. The Journal of Personality and Social Psychology, 50(1), 14–23.
  • Baer, M., Oldham, G. R., & Cummings, A. (2003). Rewarding creativity: When does it really matter? Leadership Quarterly, 14, 569–586. doi:10.1016/S1048-9843(03)00052-3
  • Bashwiner, D. M., Wertz, C. J., Flores, R. A., & Jung, R. E. (2016) Musical creativity “Revealed” in brain structure: Interplay between motor, default mode, and limbic networks. Sci Rep 6: 20482. doi:10.1038/srep20482
  • Boccia, M., Piccardi, L., Palermo, L., Nori, R., & Palmiero, M. (2015). Where do bright ideas occur in our brain? Meta-analytic evidence from neuroimaging studies of domain-specific creativity. Frontiers in Psychology, 6, 1195. doi:10.3389/fpsyg.2015.01195
  • Deci, E., & Ryan, R. (1985). Intrinsic motivation and self-determination in human behavior. New York, NY: Plenum.
  • Diekhof, E. K., & Gruber, O. (2010). When desire collides with reason: Functional interactions between anteroventral prefrontal cortex and nucleus accumbens underlie the human ability to resist impulsive desires. Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 30(4), 1488–1493. doi:10.1523/JNEUROSCI.4690-09.2010
  • Diekhof, E. K., Keil, M., Obst, K. U., Henseler, I., Dechent, P., Falkai, P., & Gruber, O. (2012). A functional neuroimaging study assessing gender differences in the neural mechanisms underlying the ability to resist impulsive desires. Brain Research, 1473, 63–77. doi:10.1016/j.brainres.2012.07.010
  • Diekhof, E. K., Nerenberg, L., Falkai, P., Dechent, P., Baudewig, J., & Gruber, O. (2011). Impulsive personality and the ability to resist immediate reward: An fMRI study examining interindividual differences in the neural mechanisms underlying self-control. Human Brain Mapping, 33(12), 2768–2784. doi:10.1002/hbm.21398
  • Eisenberger, R., & Armeli, S. (1997). Can salient reward increase creative performance without reducing intrinsic creative interest? Journal of Personality and Social Psychology, 72(3), 652–663. PMID: 9120789. doi:10.1037/0022-3514.72.3.652
  • Eisenberger, R., & Rhoades, L. (2001). Incremental effects of reward on creativity. Journal of Personality and Social Psychology, 81(4), 728–741. PMID: 11642357. doi:10.1037/0022-3514.81.4.728
  • Eisenberger, R., & Selbst, M. (1994). Does reward increase or decrease creativity? Journal of Personality and Social Psychology, 66(6), 1116–1127. PMID: 11642357. doi:10.1037/0022-3514.66.6.1116
  • Elliott, R., Newman, J. L., Longe, O. A., & Deakin, J. F. (2003). Differential response patterns in the striatum and orbitofrontal cortex to financial reward in humans: A parametric functional magnetic resonance imaging study. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience, 23(1), 303–307.
  • Elliott, R., Newman, J. L., Longe, O. A., & William Deakin, J. F. (2004). Instrumental responding for rewards is associated with enhanced neuronal response in subcortical reward systems. Neuroimage, 21(3), 984–990. doi:10.1016/j.neuroimage.2003.10.010
  • Goya-Maldonado, R., Weber, K., Trost, S., Diekhof, E., Keil, M., Dechent, P., & Gruber, O. (2015). Dissociating pathomechanisms of depression with fMRI: Bottom-up or top-down dysfunctions of the reward system. European Archives of Psychiatry and Clinical Neuroscience, 265(1), 57–66. doi:10.1007/s00406-014-0552-2
  • Haber, S. N., & Knutson, B. (2010). The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 35(1), 4–26. doi:10.1038/npp.2009.129
  • Huang, P., Qiu, L., Shen, L., Zhang, Y., Song, Z., Qi, Z., … Xie, P. (2013). Evidence for a left-over-right inhibitory mechanism during figural creative thinking in healthy nonartists. Human Brain Mapping, 34(10), 2724–2732. doi:10.1002/hbm.22093
  • Knutson, B., Taylor, J., Kaufman, M., Peterson, R., & Glover, G. (2005). Distributed neural representation of expected value. Journal of Neuroscience : the Official Journal of the Society for Neuroscience, 25(19), 4806–4812. doi:10.1523/JNEUROSCI.0642-05.2005
  • Knutson, B., Westdorp, A., Kaiser, E., & Hommer, D. (2000). FMRI visualization of brain activity during a monetary incentive delay task. Neuroimage, 12(1), 20–27. doi:10.1006/nimg.2000.0593
  • Kowatari, Y., Lee, S. H., Yamamura, H., Nagamori, Y., Levy, P., Yamane, S., & Yamamoto, M. (2009). Neural networks involved in artistic creativity. Human Brain Mapping, 30(5), 1678–1690. doi:10.1002/hbm.v30:5
  • Laureiro-Martínez, D., Canessa, N., Brusoni, S., Zollo, M., Hare, T., Alemanno, F., Cappa, S. F. (2014). Frontopolar cortex and decision-making efficiency: Comparing brain activity of experts with different professional background during an exploration-exploitation task. Frontiers in Human Neuroscience, 7, 927.
  • Lepper, M. R., Greene, D., & Nisbett, R. E. (1973). Undermining children’s intrinsic interest with extrinsic reward: A test of the “overjustification” hypothesis. Journal of Personality and Social Psychology, 28, 129–137. doi:10.1037/h0035519
  • Levy, D. J., & Glimcher, P. W. (2011). Comparing apples and oranges: Using reward-specific and reward- general subjective value representation in the brain. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31(41), 14693–14707. doi:10.1523/JNEUROSCI.2218-11.2011
  • Pessiglione, M., Schmidt, L., Draganski, B., Kalisch, R., Lau, H., Dolan, R. J., & Frith, C. D. (2007). How the brain translates money into force: A neuroimaging study of subliminal motivation. Science, 316(5826), 904–906. doi:10.1126/science.1140459
  • Rademacher, L., Krach, S., Kohls, G., Irmak, A., Grunder, G., & Spreckelmeyer, K. N. (2010). Dissociation of neural networks for anticipation and consumption of monetary and social rewards. Neuroimage, 49(4), 3276–3285. doi:10.1016/j.neuroimage.2009.10.089
  • Runco, M. A. (2004). Creativity. Annual Review of Psychology, 55, 657–687. doi:10.1146/annurev.psych.55.090902.141502
  • Saggar, M., Quintin, E. M., Bott, N. T., Kienitz, E., Chien, Y. H., Hong, D. W., … Reiss, A. L. (2016). Changes in brain activation associated with spontaneous improvization and figural creativity after design-thinking-based training: A longitudinal fmri study. Cereb Cortex. doi:10.1093/cercor/bhw171
  • Schlegel, A., Alexander, P., Fogelson, S. V., Li, X., Lu, Z., Kohler, P. J., … Meng, M. (2015). The artist emerges: Visual art learning alters neural structure and function. Neuroimage, 105, 440–451. doi:10.1016/j.neuroimage.2014.11.014
  • Sesack, S. R., & Grace, A. A. (2010). Cortico-basal ganglia reward network: Microcircuitry. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology, 35(1), 27–47. doi:10.1038/npp.2009.93
  • Small, D. M., Gitelman, D., Simmons, K., Bloise, S. M., Parrish, T., & Mesulam, M. M. (2005). Monetary incentives enhance processing in brain regions mediating top-down control of attention. Cereb Cortex, 15(12), 1855–1865. doi:10.1093/cercor/bhi063
  • Sternberg, R. J., & Lubart, T. I. (2002). The concept of creativity: Prospects and paradigms. In R. J. Sternberg (Ed.), Handbook of creativity (pp. 3–16). London, UK: Cambridge University Press.
  • Trost, S., Diekhof, E. K., Zvonik, K., Lewandowski, M., Usher, J., Keil, M., … Gruber, O. (2014). Disturbed anterior prefrontal control of the mesolimbic reward system and increased impulsivity in bipolar disorder. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology, 39(8), 1914–1923. doi:10.1038/npp.2014.39
  • Wolf, C., Mohr, H., Diekhof, E. K., Vieker, H., Goya-Maldonado, R.,Trost, S., … Gruber, O. (2015). CREB1 genotype modulates adaptive reward-based decisions in humans. Cereb Cortex, 26(7), 2970–181.
  • Zink, C. F., Pagnoni, G., Martin-Skurski, M. E., Chappelow, J. C., & Berns, G. S. (2004). Human striatal responses to monetary reward depend on saliency. Neuron, 42(3), 509–517. doi:10.1016/S0896-6273(04)00183-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.