332
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Individual Differences in Brain Structure and Resting Brain Function Underlie Representation-Connection in Scientific Problem Solving

, , , , , , & show all
Pages 132-148 | Received 23 Nov 2018, Accepted 29 Mar 2019, Published online: 23 Jun 2019

References

  • Anderson, R. E., & Helstrup, T. (1993). Visual discovery in mind and on paper. Memory & Cognition, 21(3), 283–293. doi:10.3758/bf03208261
  • Ash, I. K., & Wiley, J. (2006). The nature of restructuring in insight: An individual di- fferences approach. Psychonomic Bulletin & Review, 13(1), 66–73. doi:10.3758/BF03193814
  • Baldassarre, A., Lewis, C. M., Committeri, G., Snyder, A. Z., Romani, G. L., & Corbetta, M. (2012). Individual variability in functional connectivity predicts performance of a perceptual task. Proceedings of the National Academy of Sciences, 109(9), 3516–3521. doi:10.1073/pnas.1113148109
  • Barron, F. (1955). The disposition toward originality. The Journal of Abnormal and Social Psychology, 51(3), 478. doi:10.1037/h0048073
  • Barthlott, W., & Neinhuis, C. (1997). Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202(1), 1–8. doi:10.2307/23384993
  • Barton, R. A. (1998). Visual specialization and brain evolution in primates. Proceedings Biological Sciences, 265(1409), 1933–1937.doi:10.1098/rspb.1998.0523
  • Bearman, C. R., & Ormerod, T. C. (2002). An Exploration of Real-World Analogical Problem Solving in Novices. Proceedings of the Annual Meeting of the Cognitive Science Society.
  • Beaty, Benedek, M., Kaufman, S. B., & Silvia, P. J. (2015). Default and Executive Network Coupling Supports Creative Idea Production. Scientific Report, 5, 10964. doi:10.1038/srep10964
  • Beaty, Silvia, P. J., Nusbaum, E. C., Jauk, E., & Benedek, M. (2014). The roles of associative and executive processes in creative cognition. Memory & Cognition, 42(7), 1186–1197. doi:10.3758/s13421-014-0428-8
  • Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative Cognition and Brain Network Dynamics. Trends in Cognitive Sciences, 20(2), 87–95. doi:10.1016/j.tics.2015.10.004
  • Beaty, R. E., Benedek, M., Wilkins, R. W., Jauk, E., Fink, A., Silvia, P. J., … Neubauer, A. C. (2014). Creativity and the default network: A functional connectivity analysis of the creative brain at rest. Neuropsychologia, 64, 92–98. doi:10.1016/j.neuropsychologia.2014.09.019
  • Bischof, M., & Bassetti, C. L. (2004). Total dream loss: A distinct neuropsychological dysfunction after bilateral PCA stroke. Annals of Neurology, 56(4), 583–586. doi:10.1002/ana.20246
  • Biswal, B., Zerrin Yetkin, F., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo‐planar mri. Magnetic Resonance in Medicine, 34(4), 537–541. doi:10.1002/mrm.1910340409
  • Biswal, B. B. (2012). Resting state fMRI: A personal history. Neuroimage, 62(2), 938–944. doi:10.1016/j.neuroimage.2012.01.090
  • Biswal, B. B., Mennes, M., Zuo, X. N., Gohel, S., Kelly, C., Smith, S. M., … Colcombe, S. (2010). Toward discovery science of human brain function. Neuroscience Research, 71(10), 4734–4739. doi:10.1016/j.neures.2011.07.131
  • Boden, M. A. (1994). Précis of the creative mind: Myths and mechanisms. Behavioral and Brain Sciences, 17(3), 519–531. doi: 10.1017/S0140525X0003569X
  • Bowden, E. M., & Beeman, M. J. (1998). Getting the right idea: Semantic activation in the right hemisphere may help solve insight problems. Psychological Science, 9(6), 435–440. doi:10.1111/1467-9280.00082
  • Bowden, E. M., & Jung-Beeman, M. (2007). Methods for investigating the neural components of insight. Methods, 42(1), 87–99. doi:10.1016/j.ymeth.2006.11.007
  • Bowden, E. M., Jung-Beeman, M., Fleck, J., & Kounios, J. (2005). New approaches to demystifying insight. Trends in Cognitive Sciences, 9(7), 322–328. doi:10.1016/j.tics.2005.05.012
  • Brass, M., Wenke, D., Spengler, S., & Waszak, F. (2009). Neural correlates of overcoming interference from instructed and implemented stimulus–Response associations. The Journal of Neuroscience, 29(6), 1766–1772. doi:10.1523/JNEUROSCI.5259-08.2009
  • Caldwell, J. H. (1985). The IDEAL problem solver: A guidefor improving thinking, learning, and creativity (L) by John D.Bransford, Barry S. Stein. The Mathematics Teacher, 78(4), 304. https://www.jstor.org/stable/27964503
  • Campbell, D. T. (1960). Blind variation and selective retentions in creative thought as in other knowledge processes. Psychological Review, 67(6), 380. doi:10.1037/h0040373
  • Cao, G., Yang, D., & Zhang, Q. (2006). Activation of prototypal matters in insight problem solving: An automatic or controllable processing? Chinese Psychological Science, 29(5), 1123–1127. doi:10.16719/j.cnki.1671-6981.2006.05.023
  • Cerruti, C., & Schlaug, G. (2009). Anodal transcranial direct current stimulation of the prefrontal cortex enhances complex verbal associative thought. Journal of Cognitive Neuroscience, 21(10), 1980–1987. doi:10.1162/jocn.2008.21143
  • Chen, S., Xia, W., Li, L., Liu, J., He, Z., Zhang, Z., … Hu, D. (2006). Gray matter density reduction in the insula in fire survivors with posttraumatic stress disorder: A voxel-based morphometric study. Psychiatry Research, 146(1), 65–72. doi:10.1016/j.pscychresns.2005.09.006
  • Chrysikou, E. G., Hamilton, R. H., Coslett, H. B., Datta, A., Bikson, M., & Thompson-Schill, S. L. (2013). Noninvasive transcranial direct current stimulation over the left prefrontal cortex facilitates cognitive flexibility in tool use. Cognitive Neuroscience, 4(2), 81–89. doi:10.1080/17588928.2013.768221
  • Chumbley, J. R., & Friston, K. J. (2009). False discovery rate revisited: FDR and topological inference using Gaussian random fields. Neuroimage, 44(1), 62–70. doi:10.1016/j.neuroimage.2008.05.021
  • Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201–215. doi:10.1038/nrn755
  • Dam, W. O. V., Decker, S. L., Durbin, J. S., Vendemia, J. M. C., & Desai, R. H. (2015). Resting state signatures of domain and demand-specific working memory performance. Neuroimage, 118, 174. doi:10.1016/j.neuroimage.2015.05.017
  • Deng, Y., Wang, Y., Ding, X., & Tang, Y. Y. (2015). The relevance of fractional amplitude of low-frequency fluctuation to interference effect. Behavioural Brain Research, 296, 401–407. doi:10.1016/j.bbr.2015.08.014
  • Dias, R., Robbins, T., & Roberts, A. C. (1997). Dissociable forms of inhibitory control within prefrontal cortex with an analog of the Wisconsin Card Sort Test: Restriction to novel situations and independence from “on-line” processing. The Journal of Neuroscience, 17(23), 9285–9297. doi:10.1037//0735-7044.110.5.872
  • Dickinson, M. H. (1999). Bionics: Biological insight into mechanical design. Proceedings of the National Academy of Sciences, 96(25), 14208–14209. doi:10.1073/pnas.96.25.14208
  • Dietrich, A., & Kanso, R. (2010). A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychological Bulletin, 136(5), 822. doi:10.1037/a0019749
  • Durston, S., & Casey, B. J. (2006a). A shift from diffuse to focal cortical activity with development: The authors‘ reply. Developmental Science, 9(1), 18. doi:10.1111/j.1467-7687.2005.00458.x
  • Durston, S., & Casey, B. J. (2006b). What have we learned about cognitive development from neuroimaging?. Neuropsychologia, 44(11), 2149–2157. doi:10.1016/j.neuropsychologia.2005.10.010
  • Finke, R. (1990). Creative Imagery: Discoveries and Inventions in Visualization. Hillsdale NJ England Lawrence Erlbaum Associates Inc 1990 Ix, 188. Retrieved from https://lion.wm.edu/uhtbin/cgisirsi/0/0/0/5?searchdata1=%5EC423363
  • Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8(9), 700–711. doi:10.1038/nrn2201
  • Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S., & Turner, R. (1996). Movement‐related effects in fMRI time‐series. Magnetic Resonance in Medicine, 35(3), 346–355. doi:10.1002/mrm.1910350312
  • Frost, M. A., & Goebel, R. (2012). Measuring structural-functional correspondence: Spatial variability of specialised brain regions after macro-anatomical alignment. Neuroimage, 59(2), 1369–1381. doi:10.1016/j.neuroimage.2011.08.035
  • Gentner, D., & Smith, L. (2012). Analogical Reasoning. Encyclopedia of Human Behavior, 2746(1), 130–136. doi:10.1016/B978-0-12-375000-6.00022-7
  • Goodyear, B. G., & Douglas, E. A. (2009). Decreasing task-related brain activity over repeated functional MRI scans and sessions with no change in performance: Implications for serial investigations. Experimental Brain Research, 192(2), 231. doi:10.1007/s00221-008-1574-7
  • Haier, R. J., Karama, S., Leyba, L., & Jung, R. E. (2009). MRI assessment of cortical thickness and functional activity changes in adolescent girls following three months of practice on a visual-spatial task. Bmc Research Notes, 2(1), 174. doi:10.1186/1756-0500-2-174
  • Halpern, A. R. (1988). Mental scanning in auditory imagery for songs. Journal of Experimental Psychology Learning Memory & Cognition, 14(3), 434–443. doi:10.1037/0278-7393.14.3.434
  • Hao, X., Cui, S., Li, W., Yang, W., Qiu, J., & Zhang, Q. (2013). Enhancing insight in scientific problem solving by highlighting the functional features of prototypes: An fMRI study. Brain Research, 1534(8), 46–54. doi:10.1016/j.brainres.2013.08.041
  • Hölzel, B. K., Carmody, J., Vangel, M., Congleton, C., Yerramsetti, S. M., Gard, T., & Lazar, S. W. (2011). Mindfulness practice leads to increases in regional brain gray matter density. Psychiatry Research - Neuroimaging, 191(1), 36–43. doi:10.1016/j.pscychresns.2010.08.006
  • Hu, S., Chao, H. H. A., Zhang, S., Ide, J. S., & Li, C. S. R. (2014). Changes in cerebral morphometry and amplitude of low-frequency fluctuations of BOLD signals during healthy aging: Correlation with inhibitory control. Brain Structure & Function, 219(3), 983–994. doi:10.1007/s00429-013-0548-0
  • Jung, Mead, Carrasco, & Flores. (2013). The structure of creative cognition in the human brain. Frontiers in Human Neuroscience, 7(2), 330. doi:10.3389/fnhum.2013.00330
  • Jung, R. E., Segall, J. B. H., Flores, R. A., Smith, S. M., Chavez, R. S., & Haier, R. J. (2010). Neuroanatomy of creativity. Human Brain Mapping, 31(3), 398–409. doi:10.1002/hbm.20874
  • Jung-Beeman, M., Bowden, E. M., Haberman, J., Frymiare, J. L., Arambel-Liu, S., Greenblatt, R., … Kounios, J. (2004). Neural activity when people solve verbal problems with insight. PLoS Biology, 2(4), 500–510. doi:10.1371/journal.pbio.0020097
  • Kanai, R., & Rees, G. (2011). The structural basis of inter-individual differences in human behaviour and cognition. Nature Reviews Neuroscience, 12(4), 231–242. doi:10.1038/nrn3000
  • Knoblich, G., & Wartenberg, F. (1998). Unbemerkte Lösungshinweise begünstigen Veränderungen der Problemrepräsentation. = Unnoticed hints facilitate representational change in problem solving. Zeitschrift Für Psychologie Mit Zeitschrift Für Angewandte Psychologie, 206(3), 207–234. Retrieved from http://ezproxy.lib.utexas.edu/login?url=http://search.ebscohost.com/login. aspx? direct =true&db=psyh&AN=1999-00086-001&site=ehost-live
  • Knoblich, O., & Raney, G. E. (2001). An eye movement study of insight problem solving. Memory & Cognition, 29(7), 1000–1009. doi:10.3758/BF03195762
  • Kosslyn, S. M., Alpert, N. M., Thompson, W. K., Maljkovic, V., Weise, S. B., Chabris, C. F., … Buonanno, F. (1993). Visual mental imagery activates topographically organized visual cortex: PET investigations. Cognitive Neuroscience, Journal Of, 5(3), 263–287. doi:10.1162/jocn.1993.5.3.263
  • Kosslyn, S. M., & Ochsner, K. N. (1994). In search of occipital activation during visual mental imagery. Trends in Neurosciences, 17(7), 290–292. doi:10.1016/0166-2236(94)90059-0
  • Kunisato, Y., Okamoto, Y., Okada, G., Aoyama, S., Nishiyama, Y., Onoda, K., & Yamawaki, S. (2011). Personality traits and the amplitude of spontaneous low-frequency oscillations during resting state. Neuroscience Letters, 492(2), 109–113. doi:10.1016/j.neulet.2011.01.067
  • Landau, S. M., Schumacher, E. H., Garavan, H., Druzgal, T. J., & D‘Esposito, M. (2004). A functional MRI study of the influence of practice on component processes of working memory. Neuroimage, 22(1), 211–221. doi:10.1016/j.neuroimage.2004.01.003
  • Leboutillier, N., & Marks, D. F. (2003). Mental imagery and creativity: A meta-analytic review study. British Journal of Psychology, 94(1), 29–44. doi:10.1348/000712603762842084
  • Li, W., Li, Y., Yang, W., Zhang, Q., Wei, D., Li, W., … Qiu, J. (2015). Brain structures and functional connectivity associated with individual differences in Internet tendency in healthy young adults. Neuropsychologia, 70, 134–144. doi:10.1016/j.neuropsychologia.2015.02.019
  • Limb, C. J., & Braun, A. R. (2008). Neural substrates of spontaneous musical performance: An fMRI study of jazz improvisation. PLoS one, 3(2), e1679. doi:10.1371/journal.pone.0001679
  • Luo. (2004). Neural correlates of insight. Acta Psychologica Sinica, 36(2), 219–234. http://ir.psych.ac.cn:8080/handle/311026/9914
  • Luo, J., Du, X., Tang, X., Zhang, E., Li, H., & Zhang, Q. (2013b). The electrophysiological correlates of scientific innovation induced by heuristic information. Creativity Research Journal, 25(1), 15–20. doi:10.1080/10400419.2013.752179
  • Luo, J., Li, W., Qiu, J., Wei, D., Liu, Y., Zhang, Q., & Kilner, J. (2013). Neural basis of scientific innovation induced by heuristic prototype. PloS one, 8(1), e49231. doi:10.1371/journal.pone.0049231
  • Luo, J., & Niki, K. (2003). Function of hippocampus in“insight” of problem solving. Hippocampus, 13(3), 316–323. doi:10.1002/hipo.10069
  • Luo, T., Li, Z., Tian, Q., & Zhang. (2012a). The brain mechanism of insight induced by heuristic prototype in invention. Advances in Psychological Science, 20(4), 504–513. doi:10.3724/SP.J.1042.2012.00504
  • Macaluso, E., Frith, C. D., & Driver, J. (2000). Modulation of human visual cortex by crossmodal spatial attention. Science, 289(5482), 1206–1208. doi:10.1126/science.289.5482.1206
  • Maier. (1931). Reasoning in humans. II. The solution of a problem and its appearance in consciousness. Journal of Comparative Psychology, 12(2), 181–194. doi:10.1037/h0071361
  • Mar, R. A., Spreng, R. N., & Deyoung, C. G. (2013). How to produce personality neuroscience research with high statistical power and low additional cost. Cognitive Affective & Behavioral Neuroscience, 13(3), 674–685. doi:10.3758/s13415-013-0202-6
  • Marks, D. F. (1973). Visual imagery differences in the recall of pictures. British Journal of Psychology, 64(1), 17–24. doi:10.1111/j.2044-8295.1973.tb01322.x
  • Mennes, M., Kelly, C., Zuo, X. N., Di, M. A., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2010). Inter-individual differences in resting-state functional connectivity predict task-induced BOLD activity. Neuroimage, 50(4), 1690–1701. doi:10.1016/j.neuroimage.2010.01.002
  • Mennes, M., Zuo, X. N., Kelly, C., Di, M. A., Zang, Y. F., Biswal, B., … Milham, M. P. (2011). Linking inter-individual differences in neural activation and behavior to intrinsic brain dynamics. Neuroimage, 54(4), 2950–2959. doi:10.1016/j.neuroimage.2010.10.046
  • Menon, V., Adleman, N. E., White, C. D., Glover, G. H., & Reiss, A. L. (2001). Error‐related brain activation during a Go/NoGo response inhibition task. Human Brain Mapping, 12(3), 131–143. doi:10.1002/1097-0193(200103)12:3<131::AID-HBM1010>3.0.CO;2-C
  • Metcalfe, J. (1986). Feeling of knowing in memory and problem solving. Journal of Experimental Psychology Learning Memory & Cognition, 12(12), 288–294. doi:10.1037/0278-7393.12.2.288
  • Metuki, N., Sela, T., & Lavidor, M. (2012). Enhancing cognitive control components of insight problems solving by anodal tDCS of the left dorsolateral prefrontal cortex. Brain Stimulation, 5(2), 110–115. doi:10.1016/j.brs.2012.03.002
  • Ming, D., Tong, D., Yang, W., Qiu, J., & Zhang, Q. (2014). How can we gain insight in scientific innovation? Prototype heuristic is one key. Thinking Skills & Creativity, 14, 98–106. doi:10.1016/j.tsc.2014.09.006
  • Miyashita, Y. (1995). How the brain creates imagery: Projection to primary visual cortex. Science, 268(5218), 1719. doi:10.1126/science.7792596
  • Niendam, T. A., Laird, A. R., Ray, K. L., Dean, Y. M., Glahn, D. C., & Carter, C. S. (2012). Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cognitive, Affective, & Behavioral Neuroscience, 12(2), 241–268. doi:10.3758/s13415-011-0083-5
  • Nusbaum, E. C., & Silvia, P. J. (2011). Are intelligence and creativity really so different?: Fluid intelligence, executive processes, and strategy use in divergent thinking. Intelligence, 39(1), 36–45. doi:10.1016/j.intell.2010.11.002
  • Ohlsson. (2010). Restructuring revisited: II. An information processing theory of restructuring and insight. Scandinavian Journal of Psychology, 25(2),117–129. doi:10.1111/j.1467-9450.1984.tb01005.x
  • Ohlsson, S. (1992). Information processing explanations of insight and related phenomena. In M. T. Keane & K. J. Gilhooly (Eds.), Advances in the psychology of thinking (pp. 1–44). London, UK: Harvester Wheatsheaf.
  • Pan, W., Liu, C., Qian, Y., Yan, G., Yin, S., & Chen, A. (2016). The neural basis of trait self-esteem revealed by the amplitude of low-frequency fluctuations and resting state functional connectivity. Social Cognitive & Affective Neuroscience, 11(3), 367. doi:10.1093/scan/nsv119
  • Pitt, M. A., & Crowder, R. G. (1992). The role of spectral and dynamic cues in imagery for musical timbre. Journal of Experimental Psychology Human Perception & Performance, 18(3), 728–738. doi:10.1037/0096-1523.18.3.728
  • Pohlack, S. T., Meyer, P., Cacciaglia, R., Liebscher, C., Ridder, S., & Flor, H. (2014). Bigger is better! Hippocampal volume and declarative memory performance in healthy young men. Brain Structure & Function, 219(1), 255–267.
  • Qiu, J., Li, H., Jou, J., Liu, J., Luo, Y., Feng, T., … Zhang, Q. (2010). Neural correlates of the “Aha” experiences: Evidence from an fMRI study of insight problem solving. Cortex, 46(3), 397–403. doi:10.1016/j.cortex.2009.06.006
  • Qiu, J., Li, H., Luo, Y., Chen, A., Zhang, F., Zhang, J., … Zhang, Q. (2006). Brain mechanism of cognitive conflict in a guessing Chinese logogriph task. Neuroreport, 17(6), 679–682. doi:10.1097/00001756-200604240-00025
  • Raichle. (2010). Two views of brain function. Trends in Cognitive Sciences, 14(4), 180–190. doi:10.1016/j.tics.2010.01.008
  • Raichle, Macleod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676–682. doi:10.1073/pnas.98.2.676
  • Raichle, & Mintun. (2006). BRAIN WORK AND BRAIN IMAGING. Annual Review of Neuroscience, 29(1), 449. doi:10.1093/oxfordjournals.jhered.a111420
  • Reverberi, C., Toraldo, A., D‘Agostini, S., & Skrap, M. (2005). Better without (lateral) frontal cortex? Insight problems solved by frontal patients. Brain, 128(12), 2882–2890. doi:10.1093/brain/awh577
  • Schooler, J. W., Ohlsson, S., & Brooks, K. (1993). Thoughts beyond words: When language overshadows insight. Journal of Experimental Psychology: General, 122(2), 166. doi:10.1037/0096-3445.122.2.166
  • Seung-Schik, Y., Freeman, D. K., Mccarthy, J. J., & Jolesz, F. A. (2003). Neural substrates of tactile imagery: A functional MRI study. Neuroreport, 14(4), 581–585. doi:10.1097/00001756-200303240-00011
  • Shen, W., Jing, C., & Yuan. (2013). New advances in the neural correlates of insight: A decade in review of the insightful brain. Chinese Science Bulletin, 58(13), 1497–1511. doi:10.1007/s11434-012-5565-5
  • Shen, W., Yuan, Y., Liu, C., Zhang, X., Luo, J., & Gong, Z. (2016). Is creative insight task-specific? A coordinate-based meta-analysis of neuroimaging studies on insightful problem solving. International Journal of Psychophysiology, 110, 81–90. doi:10.1016/j.ijpsycho.2016.10.001
  • Shimamura, A. P. (1995). Memory and frontal lobe function. In M. S. Gazzaniga (Ed.), The cognitive neurosciences (pp. 803–813). Cambridge, MA: MIT Press.
  • Shirley, D. A., & Langan-Fox, J. (1996). Intuition: A review of the literature. Psychological Reports, 79(2), 563–584. doi:10.2466/pr0.1996.79.2.563
  • Siegler, R. (2006, January). From unconscious to conscious insights. Proceedings of the Annual Meeting of the Cognitive Science Society, 28(28), 1069–7977. Retrieved from https://escholarship.org/uc/item/42t19466
  • Simonton, D. K. (1999). Creativity as blind variation and selective retention: Is the creative process darwinian? Psychological Inquiry, 10(4), 309–328. doi:10.1207/S15327965PLI1004_4
  • Sternberg, R. J., & Lubart, T. I. (1993). Investing in creativity. Psychological Inquiry, 4(3), 229–232. doi:10.1037/0003-066X.51.7.677
  • Stoppel, C. M., Boehler, C. N., Strumpf, H., Heinze, H. J., Hopf, J. M., Düzel, E., & Schoenfeld, M. A. (2009). Neural correlates of exemplar novelty processing under different spatial attention conditions. Human Brain Mapping, 30(11), 3759–3771. doi:10.1002/hbm.20804
  • Sugiura, M., Friston, K. J., Willmes, K., Shah, N. J., Zilles, K., & Fink, G. R. (2007). Analysis of intersubject variability in activation: An application to the incidental episodic retrieval during recognition test. Human Brain Mapping, 28(1), 49–58. doi:10.1002/hbm.20256
  • Takeuchi, H., Taki, Y., Hashizume, H., Sassa, Y., Nagase, T., Nouchi, R., & Kawashima, R. (2011). Failing to deactivate: The association between brain activity during a working memory task and creativity. Neuroimage, 55(2), 681–687. doi:10.1016/j.neuroimage.2010.11.052
  • Takeuchi, H., Taki, Y., Hashizume, H., Sassa, Y., Nagase, T., Nouchi, R., & Kawashima, R. (2012). Cerebral blood flow during rest associates with general intelligence and creativity. PloS one, 6(9), e25532. doi:10.1371/journal.pone.0025532
  • Tang, Y. Y., Rothbart, M. K., & Posner, M. I. (2012). Neural correlates of establishing, maintaining, and switching brain states. Trends in Cognitive Sciences, 16(6), 330. doi:10.1016/j.tics.2012.05.001
  • Tavor, I., Parker, J. O., Mars, R. B., Smith, S. M., Behrens, T. E., & Jbabdi, S. (2016). Task-free MRI predicts individual differences in brain activity during task performance. Science, 352(6282), 216. doi:10.1126/science.aad8127
  • Tian, F., Tu, S., Qiu, J., Lv, J. Y., Wei, D. T., Su, Y. H., & Zhang, Q. L. (2011). Neural correlates of mental preparation for successful insight problem solving. Behavioural Brain Research, 216(2), 626–630. doi:10.1016/j.bbr.2010.09.005
  • Tong, D., Li, W., Dai, T., Nusbaum, H. C., Qiu, J., & Zhang, Q. (2013). Brain mechanisms of valuable scientific problem finding inspired by heuristic knowledge. Exp Brain Res, 228(4), 437–443. doi:10.1007/s00221-013-3575-4
  • Tong, D., Li, W., Tang, C., Yang, W., Tian, Y., Zhang, L., … Zhang, Q. (2015). An illustrated heuristic prototype facilitates scientific inventive problem solving: A functional magnetic resonance imaging study. Conscious Cogn, 34, 43–51. doi:10.1016/j.concog.2015.02.009
  • Tong, D., Zhu, H., Li, W., Yang, W., Qiu, J., & Zhang, Q. (2013). Brain activity in using heuristic prototype to solve insightful problems. Behavioural Brain Research, 253, 139–144. doi:10.1016/j.bbr.2013.07.017
  • Ungerleider, L. G., Courtney, S. M., & Haxby, J. V. (1998). A neural system for human visual working memory. Proceedings of the National Academy of Sciences, 95(3), 883–890. doi:10.1073/pnas.95.3.883
  • Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E., & Buckner, R. L. (2008). Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. Journal of Neurophysiology, 100(6), 3328–3342. doi:10.1152/jn.90355.2008
  • Wang, D. (2007). A report on the third revision of combined raven‘s test (CRT-C3) for children in China. Chinese Journal of Clinical Psychology, 15(6), 559. doi:10.3969/j.issn.1005-3611.2007.06.001
  • Wang, S., Zhao, Y., Cheng, B., Wang, X., Yang, X., Chen, T., … Gong, Q. (2018). The optimistic brain: Trait optimism mediates the influence of resting-state brain activity and connectivity on anxiety in late adolescence. Human Brain Mapping, 39(11), 3943–3955. doi:10.1002/hbm.24222
  • Wang, S., Zhou, M., Chen, T., Yang, X., Chen, G., & Gong, Q. (2017). Delay discounting is associated with the fractional amplitude of low-frequency fluctuations and resting-state functional connectivity in late adolescence. Scientific Reports, 7(1), 10276. doi:10.1038/s41598-017-11109-z
  • Wang, X., Han, Z., He, Y., Caramazza, A., Song, L., & Bi, Y. (2013). Where color rests: Spontaneous brain activity of bilateral fusiform and lingual regions predicts object color knowledge performance. Neuroimage, 76(1), 252. doi:10.1016/j.neuroimage.2013.03.010
  • Wei, L., Duan, X., Zheng, C., Wang, S., Gao, Q., Zhang, Z., … Chen, H. (2014). Specific frequency bands of amplitude low-frequency oscillation encodes personality. Human Brain Mapping, 35(1), 331. doi:10.1002/hbm.22176
  • Wei, T., Liang, X., He, Y., Zang, Y., Han, Z., Caramazza, A., & Bi, Y. (2012). Predicting conceptual processing capacity from spontaneous neuronal activity of the left middle temporal gyrus. Journal of Neuroscience the Official Journal of the Society for Neuroscience, 32(2), 481–489. doi:10.1523/JNEUROSCI.1953-11.2012
  • Wu, Z., Qiu, J., & Zhang, Q. (2008). Exploring the mechanism for prototype elicitation effect in insight. Psychological Development and Education, 24(1), 31–35.
  • Xing, Q., Zhang, J. X., & Zhang, Z. (2012). Event-related potential effects associated with insight problem solving in a Chinese logogriph task. Psychology, 3(1), 65–69. doi:10.4236/psych.2012.31011
  • Xing, Q., & Zhang, Z. (2013). An event-related potential effects in a Chinese logogriph task: Proof from catalytic paradigm. Studies of Psychology & Behavior 11(1), 37–42.
  • Yan, C. G., & Zang, Y. F. (2010). DPARSF: A MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Frontiers in Systems Neuroscience, 4, 13. doi:10.3389/fnsys.2010.00013
  • Yang, W., Dietrich, A., Liu, P., Ming, D., Jin, Y., Nusbaum, H. C., … Zhang, Q. (2016). Prototypes are key heuristic information in insight problem solving. Creativity Research Journal, 28(1), 67–77. doi:10.1080/10400419.2016.1125274
  • Zhang, & Qiu, J. (2005). Insight and activation of heuristic information in prototypal matters. Chinese Psychological Science, 28(1), 6–9. doi:10.3969/j.issn.1671-6981.2005.01.007
  • Zhang, Zhu, H., Qiu, J., & Luo, J. (2012). Automatic activation of prototype representation in insight: The sources of inspiration. Journal of Southwest University (Natural Science Edition), 34(9), 1–9.
  • Zhang, H., Liu, J., & Zhang, Q. (2014). Neural representations for the generation of inventive conceptions inspired by adaptive feature optimization of biological species. Cortex, 50, 162–173. doi:10.1016/j.cortex.2013.01.015
  • Zhu, Chen, Q., Xia, L., Beaty, R. E., Yang, W., Tian, F., … Chen, X. (2017). Common and distinct brain networks underlying verbal and visual creativity. Human Brain Mapping, 38(4), 2094–2111. doi:10.1002/hbm.23507
  • Zhu, W., Chen, Q., Tang, C., Cao, G., Hou, Y., & Qiu, J. (2016). Brain structure links everyday creativity to creative achievement. Brain & Cognition, 103, 70–76. doi:10.1016/j.bandc.2015.09.008
  • Zilles, K., & Amunts, K. (2013). Individual variability is not noise. Trends in Cognitive Sciences, 17(4), 153–155. doi:10.1016/j.tics.2013.02.003
  • Zou, Q. H., Zhu, C. Z., Yang, Y., Zuo, X. N., Long, X. Y., Cao, Q. J., … Zang, Y. F. (2008). An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF. Journal of Neuroscience Methods, 172(1), 137. doi:10.1016/j.jneumeth.2008.04.012
  • Zuo, X. N., Di, M. A., Kelly, C., Shehzad, Z. E., Gee, D. G., Klein, D. F., … Milham, M. P. (2010). The oscillating brain: Complex and reliable. Neuroimage, 49(2), 1432–1445. doi:10.1016/j.neuroimage.2009.09.037

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.