781
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Automated Creativity Prediction Using Natural Language Processing and Resting-State Functional Connectivity: An fNIRS Study

ORCID Icon, ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 401-418 | Received 13 Dec 2021, Published online: 23 Aug 2022

References

  • Abraham, A. (2018). The neuroscience of creativity. Cambridge University Press. https://doi.org/10.1017/9781316816981
  • Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T., & Calhoun, V. D. (2014). Tracking whole-brain connectivity dynamics in the resting state [Article]. Cerebral Cortex, 24(3), 663–676. doi:10.1093/cercor/bhs352
  • Barr, N., Pennycook, G., Stolz, J. A., & Fugelsang, J. A. (2014). Reasoned connections: A dual-process perspective on creative thought. Thinking & Reasoning, 21(1), 61–75. https://doi.org/10.1080/13546783.2014.895915
  • Beaty, R. E., Benedek, M., Kaufman, S. B., & Silvia, P. J. (2015). Default and executive network coupling supports creative idea production. Scientific Reports, 5(1), 10964. doi:10.1038/srep10964
  • Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in Cognitive Sciences, 20(2), 87–95. doi:10.1016/j.tics.2015.10.004
  • Beaty, R. E., Benedek, M., Wilkins, R. W., Jauk, E., Fink, A., Silvia, P. J., … Neubauer, A. C. (2014). Creativity and the default network: A functional connectivity analysis of the creative brain at rest. Neuropsychologia, 64, 92–98. doi:10.1016/j.neuropsychologia.2014.09.019
  • Beaty, R. E., Chen, Q. L., Christensen, A. P., Kenett, Y. N., Silvia, P. J., Benedek, M., & Schacter, D. L. (2020). Default network contributions to episodic and semantic processing during divergent creative thinking: A representational similarity analysis. Neuroimage, 209, 116499. doi:10.1016/j.neuroimage.2019.116499
  • Beaty, R. E., Chen, Q., Christensen, A. P., Qiu, J., Silvia, P. J., & Schacter, D. L. (2018). Brain networks of the imaginative mind: Dynamic functional connectivity of default and cognitive control networks relates to openness to experience. Human Brain Mapping, 39(2), 811–821. doi:10.1002/hbm.23884
  • Beaty, R. E., Cortes, R. A., Zeitlen, D. C., Weinberger, A. B., & Green, A. E. (2021). Functional realignment of frontoparietal subnetworks during divergent creative thinking. Cerebral Cortex. doi:10.1093/cercor/bhab100
  • Beaty, R. E., & Johnson, D. R. (2021). Automating creativity assessment with SemDis: An open platform for computing semantic distance. Behavior Research Methods, 53(2), 757–780. doi:10.3758/s13428-020-01453-w
  • Beaty, R. E., Kenett, Y. N., Christensen, A. P., Rosenberg, M. D., Benedek, M., Chen, Q., … Silvia, P. J. (2018). Robust prediction of individual creative ability from brain functional connectivity. Proceedings of the National Academy of Sciences of the United States of America, 115(5), 1087–1092. doi:10.1073/pnas.1713532115
  • Beaty, R. E., Seli, P., & Schacter, D. L. (2019). Network neuroscience of creative cognition: Mapping cognitive mechanisms and individual differences in the creative brain. Current Opinion in Behavioral Sciences, 27, 22–30. doi:10.1016/j.cobeha.2018.08.013
  • Beaty, R. E., & Silvia, P. J. (2012). Why do ideas get more creative across time? An executive interpretation of the serial order effect in divergent thinking tasks. Psychology of Aesthetics, Creativity, and the Arts, 6(4), 309–319. https://doi.org/10.1037/a0029171
  • Beaty, R. E., Silvia, P. J., Nusbaum, E. C., Jauk, E., & Benedek, M. (2014). The roles of associative and executive processes in creative cognition. Memory & Cognition, 42(7), 1186–1197. doi:10.3758/s13421-014-0428-8
  • Becker, M., Sommer, T., & Kuhn, S. (2020). Inferior frontal gyrus involvement during search and solution in verbal creative problem solving: A parametric fMRI study. Neuroimage, 206(Article), 116294. doi:10.1016/j.neuroimage.2019.116294
  • Bendetowicz, D., Urbanski, M., Garcin, B., Foulon, C., Levy, R., Brechemier, M. L., … Volle, E. (2018). Two critical brain networks for generation and combination of remote associations. Brain: a Journal of Neurology, 141(1), 217–233. doi:10.1093/brain/awx294
  • Benedek, M., & Fink, A. (2019). Toward a neurocognitive framework of creative cognition: The role of memory, attention, and cognitive control. Current Opinion in Behavioral Sciences, 27, 116–122. doi:10.1016/j.cobeha.2018.11.002
  • Benedek, M., Jauk, E., Beaty, R. E., Fink, A., Koschutnig, K., & Neubauer, A. C. (2016). Brain mechanisms associated with internally directed attention and self-generated thought. Scientific Reports, 6(1), 22959. doi:10.1038/srep22959
  • Benedek, M., Jauk, E., Sommer, M., Arendasy, M., & Neubauer, A. C. (2014). Intelligence, creativity, and cognitive control: The common and differential involvement of executive functions in intelligence and creativity. Intelligence. Intelligence, 46, 73–83. doi:10.1016/j.intell.2014.05.007
  • Benedek, M., Jung, R. E., & Vartanian, O. (2018). The neural bases of creativity and intelligence: Common ground and differences. Neuropsychologia, 118, 1–3. doi:10.1016/j.neuropsychologia.2018.09.006
  • Birn, R. M., Molloy, E. K., Patriat, R., Parker, T., Meier, T. B., Kirk, G. R., … Prabhakaran, V. (2013). The effect of scan length on the reliability of resting-state fMRI connectivity estimates. Neuroimage, 83, 550–558. doi:10.1016/j.neuroimage.2013.05.099
  • Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008) The brain's default network - Anatomy, function, and relevance to disease. A. Kingstone & M. B. Miller (Eds.) Year in Cognitive Neuroscience 2008 1124. 1–38. 10.1196/annals.1440.011
  • Chen, Q., Beaty, R. E., Cui, Z., Sun, J., He, H., Zhuang, K., … Qiu, J. (2019). Brain hemispheric involvement in visuospatial and verbal divergent thinking. Neuroimage, 202, 116065. doi:10.1016/j.neuroimage.2019.116065
  • Chen, Q., Beaty, R. E., & Qiu, J. (2020). Mapping the artistic brain: Common and distinct neural activations associated with musical, drawing, and literary creativity. Human Brain Mapping, 41(12), 3403–3419. doi:10.1002/hbm.25025
  • Chrysikou, E. G. (2019). Creativity in and out of (cognitive) control. Current Opinion in Behavioral Sciences, 27, 94–99. doi:10.1016/j.cobeha.2018.09.014
  • Cui, X., Bryant, D. M., & Reiss, A. L. (2012). NIRS-based hyperscanning reveals increased interpersonal coherence in superior frontal cortex during cooperation. Neuroimage, 59(3), 2430–2437. doi:10.1016/j.neuroimage.2011.09.003
  • Diedrich, J., Benedek, M., Jauk, E., & Neubauer, A. C. (2015). Are creative ideas novel and useful? Psychology of Aesthetics, Creativity, and the Arts, 9(1), 35–40. doi:10.1037/a0038688
  • Duan, L., Van Dam, N. T., Ai, H., & Xu, P. (2020). Intrinsic organization of cortical networks predicts state anxiety: An functional near-infrared spectroscopy (fNIRS) study. Translational Psychiatry, 10(1), 402. doi:10.1038/s41398-020-01088-7
  • Dumas, D., & Dunbar, K. N. (2014). Understanding fluency and originality: A latent variable perspective. Thinking Skills and Creativity, 14, 56–67. doi:10.1016/j.tsc.2014.09.003
  • Dumas, D., Organisciak, P., & Doherty, M. (2020). Measuring divergent thinking originality with human raters and text-mining models: A psychometric comparison of methods. Psychology of Aesthetics, Creativity, and the Arts, 15(3), 412–425. doi:10.1037/aca0000297
  • Ellamil, M., Dobson, C., Beeman, M., & Christoff, K. (2012). Evaluative and generative modes of thought during the creative process. Neuroimage, 59(2), 1783–1794. doi:10.1016/j.neuroimage.2011.08.008
  • Feng, Q., He, L., Yang, W., Zhang, Y., Wu, X., & Qiu, J. (2019). Verbal creativity is correlated with the dynamic reconfiguration of brain networks in the resting state. Frontiers in Psychology, 10, 894. doi:10.3389/fpsyg.2019.00894
  • Fink, A., Grabner, R. H., Gebauer, D., Reishofer, G., Koschutnig, K., & Ebner, F. (2010). Enhancing creativity by means of cognitive stimulation: Evidence from an fMRI study. Neuroimage, 52(4), 1687–1695. doi:10.1016/j.neuroimage.2010.05.072
  • Fjell, A. M., Sneve, M. H., Grydeland, H., Storsve, A. B., De Lange, A. M. G., Amlien, I. K., … Walhovd, K. B. (2015). Functional connectivity change across multiple cortical networks relates to episodic memory changes in aging. Neurobiology of Aging, 36(12), 3255–3268. doi:10.1016/j.neurobiolaging.2015.08.020
  • Fong, A. H. C., Yoo, K., Rosenberg, M. D., Zhang, S., Li, C. S. R., Scheinost, D., … Chun, M. M. (2019). Dynamic functional connectivity during task performance and rest predicts individual differences in attention across studies [Article]. Neuroimage, 188, 14–25. doi:10.1016/j.neuroimage.2018.11.057
  • Forster, E. Dunbar, K. . (2009). Creativity evaluation through latent semantic analysis. Proceedings of the Annual Conference of the Cognitive Science Society. 31.
  • Fox, K. C., Spreng, R. N., Ellamil, M., Andrews-Hanna, J. R., & Christoff, K. (2015). The wandering brain: Meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes. Neuroimage, 111, 611–621. doi:10.1016/j.neuroimage.2015.02.039
  • Frith, E., Elbich, D. B., Christensen, A. P., Rosenberg, M. D., Chen, Q. L., Kane, M. J., … Beaty, R. E. (2021). Intelligence and creativity share a common cognitive and neural basis. Journal of Experimental Psychology-General, 150(4), 609–632. https://doi.org/10.1037/xge0000958
  • Green, A. E. (2016). Creativity, within reason: Semantic distance and dynamic state creativity in relational thinking and reasoning. Current Directions in Psychological Science, 25(1), 28–35. doi:10.1177/0963721415618485
  • Heinen, D. J., & Johnson, D. R. (2018). Semantic distance: An automated measure of creativity that is novel and appropriate. Psychology of Aesthetics, Creativity, and the Arts, 12(2), 144. doi:10.1037/aca0000125
  • Huppert, T. J., Diamond, S. G., Franceschini, M. A., & Boas, D. A. (2009). HomER: A review of time-series analysis methods for near-infrared spectroscopy of the brain [Article; Proceedings Paper]. Applied Optics, 48(10), D280–D298. doi:10.1364/AO.48.00D280
  • Ivancovsky, T., Shamay-Tsoory, S., Lee, J., Morio, H., & Kurman, J. (2019). A dual process model of generation and evaluation: A theoretical framework to examine cross-cultural differences in the creative process. Personality and Individual Differences, 139, 60–68. doi:10.1016/j.paid.2018.11.012
  • Jauk, E., Benedek, M., & Neubauer, A. C. (2014). The road to creative achievement: a latent variable model of ability and personality predictors. European Journal of Personality, 28(1), 95–105. doi:10.1002/per.1941
  • Johnson, D. R., Cuthbert, A. S., & Tynan, M. E. (2019). The neglect of idea diversity in creative idea generation and evaluation. Psychology of Aesthetics, Creativity, and the Arts. https://doi.org/10.1037/aca0000235
  • Kamran, M. A., Mannan, M. M. N., & Jeong, M. Y. (2016). Cortical signal analysis and advances in functional near-infrared spectroscopy signal: A review. Frontiers in Human Neuroscience, 10(Article), 261. doi:10.3389/fnhum.2016.00261
  • Kenett, Y. N. (2019). What can quantitative measures of semantic distance tell us about creativity? Current Opinion in Behavioral Sciences, 27, 11–16. doi:10.1016/j.cobeha.2018.08.010
  • Kenett, Y. N., Levy, O., Kenett, D. Y., Stanley,H. E., Faust, M., & Havlin, S. (2018). Flexibility of thought in high creative individuals represented by percolation analysis. Psychological and Cognitive Sciences, 115(5), 867–872. https://doi.org/10.1073/pnas.1717362115
  • Kenett, Y. N., Medaglia, J. D., Beaty, R. E., Chen, Q. L., Betzel, R. F., Thompson-Schill, S. L., & Qiu, J. (2018). Driving the brain towards creativity and intelligence: A network control theory analysis. Neuropsychologia, 118, 79–90. doi:10.1016/j.neuropsychologia.2018.01.001
  • Khalil, R., Karim, A. A., Kondinska, A., & Godde, B. (2020). Effects of transcranial direct current stimulation of left and right inferior frontal gyrus on creative divergent thinking are moderated by changes in inhibition control. Brain Structure and Function, 225(6), 1691–1704. doi:10.1007/s00429-020-02081-y
  • Kim, K. H. (2011). The APA 2009 division 10 debate: Are the Torrance Tests of Creative Thinking still relevant in the 21st century? Psychology of Aesthetics, Creativity, and the Arts, 5(4), 302–308. doi:10.1037/a0021917
  • Kleinmintz, O. M., Ivancovsky, T., & Shamay-Tsoory, S. G. (2019). The two-fold model of creativity: The neural underpinnings of the generation and evaluation of creative ideas. Current Opinion in Behavioral Sciences, 27, 131–138. doi:10.1016/j.cobeha.2018.11.004
  • Kuhn, S., Ritter, S. M., Muller, B. C. N., van Baaren, R. B., Brass, M., & Dijksterhuis, A. (2014). The importance of the default mode network in creativity-a structural MRI study. The Journal of Creative Behavior, 48(2), 152–163. doi:10.1002/jocb.45
  • Leon, S. A., Altmann, L. J. P., Abrams, L., Gonzalez Rothi, L. J., & Heilman, K. M. (2019). Novel associative processing and aging: Effect on creative production. Aging, Neuropsychology, and Cognition, 26(6), 807–822. doi:10.1080/13825585.2018.1532067
  • Li, J., Zhang, D., Liang, A., Liang, B., Wang, Z., Cai, Y., … Liu, M. (2017). High transition frequencies of dynamic functional connectivity states in the creative brain. Scientific Reports, 7(1), 46072. doi:10.1038/srep46072
  • Liu, C., Ren, Z. T., Zhuang, K. X., He, L., Yan, T. R., Zeng, R. C., & Qiu, J. (2021). Semantic association ability mediates the relationship between brain structure and human creativity. Neuropsychologia, 151(Article), 107722. doi:10.1016/j.neuropsychologia.2020.107722
  • Liu, H. W., Zhang, S. C., & Wu, X. D. (2014). MLSLR: Multilabel learning via sparse logistic regression. Information Sciences, 281, 310–320. doi:10.1016/j.ins.2014.05.013
  • Madore, K. P., Thakral, P. P., Beaty, R. E., Addis, D. R., & Schacter, D. L. (2019). Neural mechanisms of episodic retrieval support divergent creative thinking. Cerebral Cortex, 29(1), 150–166. doi:10.1093/cercor/bhx312
  • Marron, T. R., Berant, E., Axelrod, V., & Faust, M. (2020). Spontaneous cognition and its relationship to human creativity: A functional connectivity study involving a chain free association task. Neuroimage, 220, 117064. doi:10.1016/j.neuroimage.2020.117064
  • Mayseless, N., Hawthorne, G., & Reiss, A. L. (2019). Real-life creative problem solving in teams: FNIRS based hyperscanning study. Neuroimage, 203, 116161. doi:10.1016/j.neuroimage.2019.116161
  • Mayseless, N., & Shamay-Tsoory, S. G. (2015). Enhancing verbal creativity: Modulating creativity by altering the balance between right and left inferior frontal gyrus with tDCS. Neuroscience, 291, 167–176. doi:10.1016/j.neuroscience.2015.01.061
  • Mednick, S. (1962). The associative basis of the creative process. Psychological Review, 69(3), 220. doi:10.1037/h0048850
  • Mikolov, T., Sutskever, I., Kai, C., Corrado, G., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Proceedings of the 26th International Conferenceon Neural Information Processing Systems - Volume 2, Lake Tahoe,Nevada.
  • Mooneyham, B. W., Mrazek, M. D., Mrazek, A. J., Mrazek, K. L., Phillips, D. T., & Schooler, J. W. (2017). States of mind: Characterizing the neural bases of focus and mind-wandering through dynamic functional connectivity. Journal of Cognitive Neuroscience, 29(3), 495–506. doi:10.1162/jocn_a_01066
  • Niendam, T. A., Laird, A. R., Ray, K. L., Dean, Y. M., Glahn, D. C., & Carter, C. S. (2012). Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cognitive, Affective, & Behavioral Neuroscience, 12(2), 241–268. doi:10.3758/s13415-011-0083-5
  • Nijstad, B. A., De Dreu, C. K. W., Rietzschel, E. F., & Baas, M. (2010). The dual pathway to creativity model: Creative ideation as a function of flexibility and persistence. European Review of Social Psychology, 21(1), 34–77. https://doi.org/10.1080/10463281003765323
  • Ovando-Tellez, M., Kenett, Y. N., Benedek, M., Bernard, M., Belo, J., Beranger, B., … Volle, E. (2021). Brain connectivity-based prediction of real-life creativity is mediated by semantic memory structure. bioRxiv, 2021.2007.2028.453991. https://doi.org/10.1101/2021.07.28.453991
  • Pick, H., & Lavidor, M. (2019). Modulation of automatic and creative features of the remote associates test by angular gyrus stimulation. Neuropsychologia, 129, 348–356. doi:10.1016/j.neuropsychologia.2019.04.010
  • Pinho, A. L., de Manzano, O., Fransson, P., Eriksson, H., & Ullen, F. (2014). Connecting to create: Expertise in musical improvisation is associated with increased functional connectivity between premotor and prefrontal areas. Journal of Neuroscience, 34(18), 6156–6163. doi:10.1523/JNEUROSCI.4769-13.2014
  • Prabhakaran, R., Green, A. E., & Gray, J. R. (2013). Thin slices of creativity: Using single-word utterances to assess creative cognition. Behavior Research Methods, 46(3), 641–659. https://doi.org/10.3758/s13428-013-0401-7
  • Raichle, M. E. (2015). The Brain's Default Mode Network. In S. E. Hyman (Ed.), Annual Review of Neuroscience, Vol. 38 (Vol. 38, pp. 433–447). 10.1146/annurev-neuro-071013-014030
  • Ramanan, S., Piguet, O., & Irish, M. (2018). Rethinking the role of the angular gyrus in remembering the past and imagining the future: the contextual integration model. The Neuroscientist, 24(4), 342–352. doi:10.1177/1073858417735514
  • Reiter-Palmon, R., Forthmann, B., & Barbot, B. (2019). Scoring divergent thinking tests: A review and systematic framework. Psychology of Aesthetics Creativity and the Arts, 13(2), 144–152. https://doi.org/10.1037/aca0000227
  • Ren, Z. T., Daker, R. J., Shi, L., Sun, J. Z., Beaty, R. E., Wu, X. R., … Qiu, J. (2021). Connectome-Based predictive modeling of creativity anxiety. Neuroimage, 225(Article), 117469. doi:10.1016/j.neuroimage.2020.117469
  • Runco, M. A., & Jaeger, G. J. (2012). The standard definition of creativity. Creativity Research Journal, 24(1), 92–96. doi:10.1080/10400419.2012.650092
  • Said-Metwaly, S., Noortgate, W. V. D., & Kyndt, E. (2017). Approaches to measuring creativity: a systematic literature review. Creativity. Theories – Research - Applications, 4(2), 238–275. doi:10.1515/ctra-2017-0013
  • Schmidt, G. L., DeBuse, C. J., & Seger, C. A. (2007). Right hemisphere metaphor processing? Characterizing the lateralization of semantic processes. Brain and Language, 100(2), 127–141. doi:10.1016/j.bandl.2005.03.002
  • Shen, X. (2017). Using connectome-based predictive modeling to predict individual behavior from brain connectivity. Nature Protocols, 12, 506–518.
  • Shen, W., & Shao, M. (2019). The classification method of words in text, the evaluation method and system of literal creativity (CN Patent No. CN109241276A).
  • Shi, L., Beaty, R. E., Chen, Q., Sun, J., Wei, D., Yang, W., & Qiu, J. (2020). Brain entropy is associated with divergent thinking. Cereb Cortex, 30(2), 708–717. https://doi.org/10.1093/cercor/bhz120
  • Shi, L., Sun, J., Xia, Y., Ren, Z., Chen, Q., Wei, D., … Qiu, J. (2018). Large-scale brain network connectivity underlying creativity in resting-state and task fMRI: Cooperation between default network and frontal-parietal network. Biol Psychol, 135, 102–111. https://doi.org/10.1016/j.biopsycho.2018.03.005
  • Silvia, P. J., Winterstein, B. P., Willse, J. T., Barona, C. M., Cram, J. T., Hess, K. I., … Richard, C. A. (2008). Assessing creativity with divergent thinking tasks: Exploring the reliability and validity of new subjective scoring methods. Psychology of Aesthetics, Creativity, and the Arts, 2(2), 68–85. https://doi.org/10.1037/1931-3896.2.2.68
  • Singh, A. K., Okamoto, M., Dan, H., Jurcak, V., & Dan, I. (2005). Spatial registration of multichannel multi-subject fNIRS data to MNI space without MRI. Neuroimage, 27(4), 842–851. doi:10.1016/j.neuroimage.2005.05.019
  • Sun, J. (2013). “Jieba” (Chinese for “to stutter”) Chinese text segmentation: Built to be the best Python Chinese word segmentation module. https://github.com/fxsjy/jieba
  • Sun, J. Z., Chen, Q. L., Zhang, Q. L., Li, Y. D., Li, H. J., Wei, D. T., … Qiu, J. (2016). Training your brain to be more creative: Brain functional and structural changes induced by divergent thinking training. Human Brain Mapping, 37(10), 3375–3387. doi:10.1002/hbm.23246
  • Sun, J., Liu, Z., Rolls, E. T., Chen, Q., Yao, Y., Yang, W., … Qiu, J. (2019). Verbal creativity correlates with the temporal variability of brain networks during the resting state. Cereb Cortex, 29(3), 1047–1058. https://doi.org/10.1093/cercor/bhy010
  • Swick, D., Ashley, V., & Turken, U. (2008). Left inferior frontal gyrus is critical for response inhibition. BMC Neuroscience, 9(1), 102. doi:10.1186/1471-2202-9-102
  • Tagliazucchi, E., & Laufs, H. (2014). Decoding wakefulness levels from typical fMRI resting-state data reveals reliable drifts between wakefulness and sleep. Neuron, 82(3), 695–708. doi:10.1016/j.neuron.2014.03.020
  • Takeuchi, H., Taki, Y., Nouchi, R., Yokoyama, R., Kotozaki, Y., Nakagawa, S., … Kawashima, R. (2017). Regional homogeneity, resting-state functional connectivity and amplitude of low frequency fluctuation associated with creativity measured by divergent thinking in a sex-specific manner. Neuroimage, 152, 258–269. doi:10.1016/j.neuroimage.2017.02.079
  • Uddin, L. Q. (2015). Salience processing and insular cortical function and dysfunction. Nature Reviews Neuroscience, 16(1), 55–61. doi:10.1038/nrn3857
  • Unwalla, K., Cadieux, M. L., & Shore, D. I. (2021). Haptic awareness changes when lying down. Scientific Reports, 11(1), 13479. doi:10.1038/s41598-021-92192-1
  • Urquhart, E. L., Wang, X., Liu, H., Fadel, P. J., & Alexandrakis, G. (2020). Differences in net information flow and dynamic connectivity metrics between physically active and inactive subjects measured by Functional Near-Infrared Spectroscopy (fNIRS) during a fatiguing handgrip task. Frontiers in Neuroscience, 14, 167. doi:10.3389/fnins.2020.00167
  • Vanderhasselt, M. A., De Raedt, R., & Baeken, C. (2009). Dorsolateral prefrontal cortex and Stroop performance: Tackling the lateralization. Psychonomic Bulletin & Review, 16(3), 609–612. doi:10.3758/PBR.16.3.609
  • Vartanian, O., Beatty, E. L., Smith, I., Blackler, K., Lam, Q., & Forbes, S. (2018). One-way traffic: The inferior frontal gyrus controls brain activation in the middle temporal gyrus and inferior parietal lobule during divergent thinking. Neuropsychologia, 118, 68–78. doi:10.1016/j.neuropsychologia.2018.02.024
  • Xiang, S. Q., Qi, S. Q., Li, Y. P., Wang, L. C., Dai, D. Y., & Hu, W. P. (2021). Trait anxiety moderates the effects of tDCS over the dorsolateral prefrontal cortex (DLPFC) on creativity. Personality and Individual Differences, 177(Article), 110804. doi:10.1016/j.paid.2021.110804
  • Xiao, T., Zhang, S., Lee, L. E., Chao, H. H., Van Dyck, C., & Li, C. S. R. (2018). Exploring age-related changes in resting state functional connectivity of the amygdala: From young to middle adulthood. Frontiers in Aging Neuroscience, 10(Article), 209. https://doi.org/10.3389/fnagi.2018.00209
  • Xin, X., Hu, J. H., & Liu, L. Y. (2017). On the oracle property of a generalized adaptive elastic-net for multivariate linear regression with a diverging number of parameters. Journal of Multivariate Analysis, 162, 16–31. doi:10.1016/j.jmva.2017.08.005
  • Xu, J., Wang, J., Fan, L., Li, H., Zhang, W., Hu, Q., & Jiang, T. (2015). Tractography-based parcellation of the human middle temporal gyrus. Sci Rep, 5(1), 18883. doi:10.1038/srep18883
  • Zhou, T. Y., Tao, D. C., & Wu, X. D. (2011). Manifold elastic net: A unified framework for sparse dimension reduction. Data Mining and Knowledge Discovery, 22(3), 340–371. doi:10.1007/s10618-010-0182-x
  • Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2), 301–320. doi:10.1111/j.1467-9868.2005.00503.x
  • Zuo, X. N., Xu, T., Jiang, L., Yang, Z., Cao, X. Y., He, Y., … Milham, M. P. (2013). Toward reliable characterization of functional homogeneity in the human brain: Preprocessing, scan duration, imaging resolution and computational space. Neuroimage, 65, 374–386. https://doi.org/10.1016/j.neuroimage.2012.10.017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.