Publication Cover
Assistive Technology
The Official Journal of RESNA
Volume 32, 2020 - Issue 3
449
Views
8
CrossRef citations to date
0
Altmetric
Articles

A screening protocol incorporating brain-computer interface feature matching considerations for augmentative and alternative communication

, MS, & , PhDORCID Icon
Pages 161-172 | Accepted 09 Aug 2018, Published online: 31 Oct 2018

References

  • Ahn, M., & Jun, S. C. (2015). Performance variation in motor imagery brain–Computer interface: A brief review. Journal of Neuroscience Methods, 243, 103–110. doi:10.1016/j.jneumeth.2015.01.033
  • Belitski, A., Farquhar, J., & Desain, P. (2011). P300 audio-visual speller. Journal Of Neural Engineering, 8(2), 025022.
  • Beukelman, D., & Mirenda, P. (2013). Augmentative and alternative communication: Supporting children and adults with complex communication needs (4th ed.). Baltimore, MD: Paul H. Brookes Publishing Co.
  • Blain-Moraes, S., Schaff, R., Gruis, K. L., Huggins, J. E., & Wren, P. A. (2012). Barriers to and mediators of brain–Computer interface user acceptance: Focus group findings. Ergonomics, 55(5), 516–525. doi:10.1080/00140139.2012.661082
  • Blankertz, B., Dornhege, G., Krauledat, M., Muller, K.-R., Kunzmann, V., Losch, F., & Curio, G. (2006). The Berlin brain-computer interface: EEG-based communication without subject training. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14(2), 147–152. doi:10.1109/TNSRE.2006.875557
  • Blankertz, B., Sanelli, C., Halder, S., Hammer, E., Kübler, A., Müller, K., … Dickhaus, T. (2009). Predicting BCI performance to study BCI illiteracy. BMC Neuroscience, 10(Suppl 1), P84. doi:10.1186/1471-2202-10-S1-P84
  • Brumberg, J., Nguyen, A., Pitt, K., & Lorenz, S. (2018). Examining sensory ability, feature matching, and assessment-based adaption for a brain-computer interface using the steady visual evoked potential. Disability and Rehabilitation: Assistive Technology, 1–9. https://doi.org/10.1080/17483107.2018.1428369
  • Brumberg, J., Pitt, K., & Burnison, J. (2018). A non-invasive brain-computer interface for real-time speech synthesis: The importance of multimodal feedback. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 26(4), 874–881.
  • Brumberg, J., Pitt, K., Mantie-Kozlowski, A., & Burnison, J. (2018). Brain-Computer Interfaces for Augmentative and Alternative Communication: A Tutorial. American Journal of Speech-Language Pathology, 1–12. doi:10.1044/2017_AJSLP-16-0244
  • Brunner, P., Joshi, S., Briskin, S., Wolpaw, J. R., Bischof, H., & Schalk, G. (2010). Does the ‘P300ʹ speller depend on eye gaze? Journal of Neural Engineering, 7(5), 056013. doi:10.1088/1741-2560/7/5/056013
  • Burde, W., & Blankertz, B. (2006). Is the locus of control of reinforcement a predictor of brain-computer interface performance? In Proceedings of the 3rd International Brain-Computer Interface Workshop and Training Course (Vol. 2006, pp. 108–109).
  • Cedarbaum, J. M., & Stambler, N. (1997). Performance of the amyotrophic lateral sclerosis functional rating scale (ALSFRS) in multicenter clinical trials. Journal of the Neurological Sciences, 152, s1–s9.
  • Craje, C., Van Elk, M., Beeren, M., Van Schie, H. T., Bekkering, H., & Steenbergen, B. (2010). Compromised motor planning and Motor Imagery in right Hemiparetic Cerebral Palsy. Research in Developmental Disabilities, 31(6), 1313–1322. doi:10.1016/j.ridd.2010.07.010
  • Daly, I., Billinger, M., Laparra-Hernandez, J., Aloise, F., Garcia, M. L., Faller, J., … Muller-Putz, G. (2013). On the control of brain-computer interfaces by users with cerebral palsy. Clinical Neurophysiology, 124(9), 1787–1797. doi:10.1016/j.clinph.2013.02.118
  • Donchin, E., Spencer, K. M., & Wijesinghe, R. (2000). The mental prosthesis: Assessing the speed of a P300-based brain-computer interface. IEEE Transactions on Rehabilitation Engineering, 8(2), 174–179. doi:10.1109/86.847808
  • Fager, S., Beukelman, D., Fried-Oken, M., Jakobs, T., & Baker, J. (2012). Access Interface Strategies. Assistive Technology, 24(1), 25–33. doi:10.1080/10400435.2011.648712
  • Fried-Oken, M., Mooney, A., Peters, B., & Oken, B. (2013). A clinical screening protocol for the RSVP Keyboard brain-computer interface. Disability and Rehabilitation: Assistive Technology, 10(1), 11–18. doi:10.3109/17483107.2013.836684
  • Geronimo, A., Simmons, Z., & Schiff, S. J. (2016). Performance predictors of brain-computer Interfaces in patients with amyotrophic lateral sclerosis. Journal of Neural Engineering, 13(2), 026002. doi:10.1088/1741-2560/13/2/026002
  • Geronimo, A., Stephens, H. E., Schiff, S. J., & Simmons, Z. (2015). Acceptance of brain-computer interfaces in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 16, 258–264.
  • Gosnell, J., Costello, J., & Shane, H. (2011). Using a Clinical Approach To Answer “What Communication Apps Should We Use?”. SIG 12 Perspectives on Augmentative and Alternative Communication, 20(3), 87–96. doi:10.1044/aac20.3.87
  • Halder, S., Rea, M., Andreoni, R., Nijboer, F., Hammer, E. M., Kleih, S. C., … Kübler, A. (2010). An auditory oddball brain-computer interface for binary choices. Clinical Neurophysiology, 121(4), 516–523. doi:10.1016/j.clinph.2009.11.087
  • Heremans, E., D’hooge, A., De Bondt, S., Helsen, W., & Feys, P. (2012). The relation between cognitive and motor dysfunction and motor imagery ability in patients with multiple sclerosis. Multiple Sclerosis Journal, 19(9), 1303–1309. doi:10.1177/1352458512437812
  • Hill, K., Kovacs, T., & Shin, S. (2015). Critical issues using brain-computer interfaces for augmentative and alternative communication. Archives of Physical Medicine and Rehabilitation, 96(3), S8–S15. doi:10.1016/j.apmr.2014.01.034
  • Holz, E. M., Botrel, L., Kaufmann, T., & Kübler, A. (2015). Long-term independent brain-computer interface home use improves quality of life of a patient in the locked-in state: A case study. Archives of Physical Medicine and Rehabilitation, 96(3), S16–S26. doi:10.1016/j.apmr.2014.03.035
  • Jeunet, C., Jahanpour, E., & Lotte, F. (2016). Why standard brain-computer interface (BCI) training protocols should be changed: An experimental study. Journal of Neural Engineering, 13(3), 036024. doi:10.1088/1741-2560/13/3/036024
  • Kelly, S. P., Lalor, E. C., Finucane, C., McDarby, G., & Reilly, R. B. (2005). Visual spatial attention control in an independent brain-computer interface. IEEE Transactions on Biomedical Engineering, 52(9), 1588–1596. doi:10.1109/TBME.2005.851510
  • Kertesz, A. (2007). Western Aphasia Battery Revised [Assessment instrument]. San Antonio, TX: Pearson.
  • Lopez, M., Pomares, H., Pelayo, F., Urquiza, J., & Perez, J. (2009). Evidences of cognitive effects over auditory steady-state responses by means of artificial neural networks and its use in brain computer interfaces. Neurocomputing, 72(16–18), 3617–3623. doi:10.1016/j.neucom.2009.04.021
  • Lou, J. S. (2012). Techniques in assessing fatigue in neuromuscular diseases. Physical Medicine and Rehabilitation Clinics, 23(1), 11–22. doi:10.1016/j.pmr.2011.11.003
  • Malouin, F., Richards, C. L., Jackson, P. L., Lafleur, M. F., Durand, A., & Doyon, J. (2007). The Kinesthetic and Visual Imagery Questionnaire (KVIQ) for Assessing Motor Imagery in Persons with Physical Disabilities: A Reliability and Construct Validity Study. Journal of Neurologic Physical Therapy, 31(1), 20–29.
  • Marinelli, L., Quartarone, A., Hallett, M., Frazzitta, G., & Ghilardi, M. F. (2017). The many facets of motor learning and their relevance for Parkinson’s disease. Clinical Neurophysiology, 128(7), 1127–1141. doi:10.1016/j.clinph.2017.03.042
  • Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., … Chertkow., H. (2005). The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695–699. doi:10.1111/j.1532-5415.2005.53221.x
  • Neuper, C., Scherer, R., Reiner, M., & Pfurtscheller, G. (2005). Imagery of motor actions: Differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG. Cognitive Brain Research, 25(3), 668–677. doi:10.1016/j.cogbrainres.2005.08.014
  • Nijboer, F., Birbaumer, N., & Kubler, A. (2010). The influence of psychological state and motivation on brain-computer interface performance in patients with amyotrophic lateral sclerosis - a longitudinal study. Frontiers in Neuroscience, 4(55), 1–3.
  • Olsson, C., Jonsson, B., Larsson, A., & Nyberg, L. (2008). Motor representations and practice affect brain systems underlying imagery: An fMRI study of internal imagery in novices and active high jumpers. The Open Neuroimaging Journal, 2, 5–13. doi:10.2174/1874440000802010005
  • Olsson, C., & Nyberg, L. (2010). Motor imagery: If you can’t do it, you won’t think it. Scandinavian Journal of Medicine & Science in Sports, 20(5), 711–715. doi:10.1111/j.1600-0838.2010.01101.x
  • Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N‐back working memory paradigm: A meta‐analysis of normative functional neuroimaging studies. Human Brain Mapping, 25(1), 46–59. doi:10.1002/hbm.20131
  • Peirce, J. W. (2008). Generating Stimuli for Neuroscience Using PsychoPy. Frontiers in Neuroinformatics, 2, 10. doi:10.3389/neuro.11.010.2008
  • Pires, G., Nunes, U., & Castelo-Branco, M. (2011). GIBS block speller: Toward a gaze- independent P300-based BCI. In Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE (pp. 6360–6364). IEEE.
  • Pitt, K., & Brumberg, J. (2018). Guidelines for Feature Matching Assessment of Brain- Computer Interfaces for Augmentative and Alternative Communication. American Journal of Speech-Language Pathology, 1–15. doi:10.1044/2018_AJSLP-17-0135
  • Riccio, A., Simione, L., Schettini, F., Pizzimenti, A., Inghilleri, M., Belardinelli, M. O., … Cincotti, F. (2013). Attention and P300-based BCI performance in people with amyotrophic lateral sclerosis. Frontiers in Human Neuroscience, (7). doi:10.3389/fnhum.2013.00732
  • Sakai, K., Hikosaka, O., Miyauchi, S., Takino, R., Sasaki, Y., & Pütz, B. (1998). Transition of brain activation from frontal to parietal areas in visuomotor sequence learning. Journal of Neuroscience, 18(5), 1827–1840.
  • Sellers, E. W., Vaughan, T. M., & Wolpaw, J. R. (2010). A brain-computer interface for long-term independent home use. Amyotrophic Lateral Sclerosis, 11(5), 449–455. doi:10.3109/17482961003777470
  • Sutter, E. E. (1992). The brain response interface: Communication through visually-induced electrical brain responses. Journal of Microcomputer Applications, 15(1), 31–45. doi:10.1016/0745-7138(92)90045-7
  • Taylor, L. J., Brown, R. G., Tsermentseli, S., Al-Chalabi, A., Shaw, C. E., Ellis, C. M., … Goldstein, L. H. (2013). Is language impairment more common than executive dysfunction in amyotrophic lateral sclerosis? Journal of Neurology, Neurosurgery, and Psychiatry, 84(5), 494–498. doi:10.1136/jnnp-2012-303526
  • Vuckovic, A., & Osuagwu, B. A. (2013). Using a motor imagery questionnaire to estimate the performance of a Brain-Computer Interface based on object oriented motor imagery. Clinical Neurophysiology, 124(8), 1586–1595. doi:10.1016/j.clinph.2013.02.016
  • Wander, J., Blakely, T., Miller, K., Weaver, K., Johnson, L., Olson, J., & Ojemann, J. (2013). Distributed cortical adaptation during learning of a brain–Computer interface task. Proceedings of the National Academy of Sciences, 110(26), 10818–10823. doi:10.1073/pnas.1221127110
  • Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain–computer interfaces for communication and control. Clinical Neurophysiology, 113(6), 767–791.
  • Woolley, S. C. (2014). ALS cognitive behavioral screen manual. San Francisco, CA: The Forbes Norris MDA/ALS Research Center.
  • Woolley, S. C., York, M. K., Moore, D. H., Strutt, A. M., Murphy, J., Schulz, P. E., & Katz, J. S. (2010). Detecting frontotemporal dysfunction in ALS: Utility of the ALS Cognitive Behavioral Screen (ALS-CBS). Amyotrophic Lateral Sclerosis, 11(3), 303–311. doi:10.3109/17482961003727954

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.