Publication Cover
Assistive Technology
The Official Journal of RESNA
Volume 32, 2020 - Issue 6
1,176
Views
25
CrossRef citations to date
0
Altmetric
Review Article

Virtual reality-based wheelchair simulators: A scoping review

, MSORCID Icon, , MSORCID Icon, , PhDORCID Icon, , MS & , MSORCID Icon
Pages 294-305 | Accepted 20 Nov 2018, Published online: 07 Jan 2019

References

  • Adelola, I. A., Cox, S. L., & Rahman, A. (2002). Adaptable virtual reality interface for powered wheelchair training of disabled children. Proceedings of the 4th International Conference on disability, virtual reality and associated technologies. doi:10.1044/1059-0889(2002/er01).
  • Adelola, I. A., Cox, S. L., & Rahman, A. (2009). Virtual environments for powered wheelchair learner drivers: Case studies. Technology and Disability, 21(3), 97–106.
  • Adriaansen, J. J., Post, M. W., de Groot, S., van Asbeck, F. W., Stolwijk-Swüste, J. M., Tepper, M., & Lindeman, E. (2013). Secondary health conditions in persons with spinal cord injury: A longitudinal study from one to five years post-discharge. Journal of Rehabilitation Medicine, 45(10), 1016–1022.
  • Alshaer, A., Hoermann, S., & Regenbrecht, H. (2013). Influence of peripheral and stereoscopic vision on driving performance in a power wheelchair simulator system. Virtual Rehabilitation (ICVR), 2013 International Conference on (pp. 152–164). Philadelphia, PA: IEEE.
  • Alshaer, A., O’Hare, D., Hoermann, S., & Regenbrecht, H. (2016). The impact of the visual representation of the input device on driving performance in a power wheelchair simulator. Proceedings of 11th International Conference on Disability, Virtual Reality & Associated Technologies (ICDVRAT). Los Angeles, CA.
  • Alshaer, A., Regenbrecht, H., & O’Hare, D. (2015). Investigating visual dominance with a virtual driving task. Virtual Reality (VR), 2015 IEEE (pp. 145–146). Arles, France: IEEE.
  • Alshaer, A., Regenbrecht, H., & O’Hare, D. (2017). Immersion factors affecting perception and behaviour in a virtual reality power wheelchair simulator. Applied Ergonomics, 58, 1–12. doi:10.1016/j.apergo.2016.05.003
  • Anthierens, C., Impagliazzo, J.-L., Dupuis, Y., & Richard, E. (2006, August 1–5,). A specific locomotion interface for virtual reality - Design of a wheelchair type haptic. ICINCO 2006, Proceedings of the Third International Conference on Informatics in Control, Automation and Robotics, Robotics and Automation, Setúbal, Portugal.
  • Archambault, P. S., Blackburn, É., Reid, D., Routhier, F., & Miller, W. C. (2016). Development and user validation of driving tasks for a power wheelchair simulator. Disability and Rehabilitation, 39(15), 1–8. doi:10.1080/09638288.2016.1226423
  • Archambault, P. S., Gagnon, D., Routhier, F., & Miller, W. (2016). Effectiveness of power wheelchair simulator training, delivered at home, on wheelchair driving skills. Annals of Physical and Rehabilitation Medicine, 59, e37–e38. doi:10.1016/j.rehab.2016.05.004
  • Archambault, P. S., Routhier, F., Hamel, M., & Boissy, P. (2008). Analysis of movement to develop a virtual reality powered-wheelchair simulator. Virtual Rehabilitation, 2008 (pp. 133–138). Vancouver, BC: IEEE.
  • Archambault, P. S., Tremblay, S., Cachecho, S., Routhier, F., & Boissy, P. (2012). Driving performance in a power wheelchair simulator. Disability and Rehabilitation: Assistive Technology, 7(3), 226–233.
  • Arksey, H., & O’Malley, L. (2005). Scoping studies: Towards a methodological framework. International Journal of Social Research Methodology, 8(1), 19–32. doi:10.1080/1364557032000119616
  • Authier, E. L., Pearlman, J., Allegretti, A. L., Rice, I., & Cooper, R. A. (2007). A sports wheelchair for low-income countries. Disability and Rehabilitation, 29(11–12), 963–967. doi:10.1080/09638280701240714
  • Baños, R. M., Botella, C., Alcañiz, M., Liaño, V., Guerrero, B., & Rey, B. (2004). Immersion and emotion: Their impact on the sense of presence. CyberPsychology & Behavior, 7(6), 734–741. doi:10.1089/cpb.2004.7.734
  • Blouin, M., Lalumière, M., Gagnon, D. H., Chénier, F., & Aissaoui, R. (2015). Characterization of the immediate effect of a training session on a manual wheelchair simulator with haptic biofeedback: Towards more effective propulsion. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 23(1), 104–115. doi:10.1109/TNSRE.2014.2330837
  • Borges, L. R., Martins, F. R., Naves, E. L., Bastos, T. F., & Lucena, V. F. (2016). Multimodal system for training at distance in a virtual or augmented reality environment for users of electric-powered wheelchairs. IFAC-PapersOnLine, 49(30), 156–160. doi:10.1016/j.ifacol.2016.11.146
  • Brien, S. E., Lorenzetti, D. L., Lewis, S., Kennedy, J., & Ghali, W. A. (2010). Overview of a formal scoping review on health system report cards. Implementation Science, 5(1), 2. doi:10.1186/1748-5908-5-2
  • Buxbaum, L. J., Palermo, M. A., Mastrogiovanni, D., Read, M. S., Rosenberg-Pitonyak, E., Rizzo, A. A., & Coslett, H. B. (2008). Assessment of spatial attention and neglect with a virtual wheelchair navigation task. Journal of Clinical and Experimental Neuropsychology, 30(6), 650–660. doi:10.1080/13803390701520287
  • Carlozzi, N. E., Gade, V., Rizzo, A. S., & Tulsky, D. S. (2013). Using virtual reality driving simulators in persons with spinal cord injury: Three screen display versus head mounted display. Disability and Rehabilitation: Assistive Technology, 8(2), 176–180.
  • Chénier, F., Bigras, P., & Aissaoui, R. (2014). A new wheelchair ergometer designed as an admittance-controlled haptic robot. IEEE/ASME Transactions on Mechatronics, 19(1), 321–328. doi:10.1109/TMECH.2012.2235079
  • Chénier, F., Gagnon, D. H., Blouin, M., & Aissaoui, R. (2016). A simplified upper-body model to improve the external validity of wheelchair simulators. IEEE/ASME Transactions on Mechatronics, 21(3), 1641–1649. doi:10.1109/TMECH.2016.2527240
  • Crawford, J. L., & Stodolska, M. (2008). Constraints experienced by elite athletes with disabilities in Kenya, with implications for the development of a new hierarchical model of constraints at the societal level. Journal of Leisure Research, 40(1), 128. doi:10.1080/00222216.2008.11950136
  • Crichlow, L. (2011). Development of a comprehensive mathematical model and physical interface for manual wheelchair simulation (PhD thesis). University of Toronto, Toronto, Canada
  • Crichlow, L., Fernie, G., Campos, J., & Grant, P. (2012). A full motion manual wheelchair simulator for rehabilitation research. 2011 RESNA/ICTA Conference on Advancing Rehabilitation Technologies for an Aging Society, Toronto, Canada.
  • De Santis, A., Di Gironimo, G., Marzano, A., Siciliano, B., & Tarallo, A. (2008). A virtual-reality-based evaluation environment for wheelchair-mounted manipulators. Eurographics Italian Chapter Conference (Vol. 1, pp. 1–8). Salerno, Italy: Citeseer.
  • Di Gironimo, G., Matrone, G., Tarallo, A., Trotta, M., & Lanzotti, A. (2013). A virtual reality approach for usability assessment: Case study on a wheelchair-mounted robot manipulator. Engineering with Computers, 29(3), 359–373. doi:10.1007/s00366-012-0274-x
  • Dicianno, B. E., Mahajan, H., Guirand, A. S., & Cooper, R. A. (2012). Virtual electric power wheelchair driving performance of individuals with spastic cerebral palsy. American Journal of Physical Medicine & rehabilitation/Association of Academic Physiatrists, 91(10), 823. doi:10.1097/PHM.0b013e31825a1497
  • Dicianno, B. E., Sibenaller, S., Kimmich, C., & Pyo, J. (2009). Joystick use for virtual power wheelchair driving in individuals with tremor: Pilot study. Journal of Rehabilitation Research and Development, 46(2), 269. doi:10.1682/JRRD.2008.02.0022
  • Felnhofer, A., Kothgassner, O. D., Hauk, N., Beutl, L., Hlavacs, H., & Kryspin-Exner, I. (2014). Physical and social presence in collaborative virtual environments: Exploring age and gender differences with respect to empathy. Computers in Human Behavior, 31, 272–279. doi:10.1016/j.chb.2013.10.045
  • Gadia, D., Granato, M., Maggiorini, D., Ripamonti, L. A., & Vismara, C. (2017). Consumer-oriented head mounted displays: Analysis and evaluation of stereoscopic characteristics and user preferences. Mobile Networks and Applications, 23(136): 1–11.
  • Gell, N. M., Wallace, R. B., Lacroix, A. Z., Mroz, T. M., & Patel, K. V. (2015). Mobility device use in older adults and incidence of falls and worry about falling: Findings from the 2011–2012 National Health and Aging Trends Study. Journal of the American Geriatrics Society, 63(5), 853–859. doi:10.1111/jgs.13393
  • Goncalves, F., Trenoras, L., Monacelli, E., & Schmid, A. (2014). Motion adaptation on a wheelchair driving simulator. 2nd Workshop on Virtual and Augmented Assistive Technology (VAAT) (pp. 17–22). Minneapolis, MN: IEEE.
  • Grant, M., Harrison, C., & Conway, B. (2004). Wheelchair simulation. Cambridge Workshop Series on Universal Access and Assistive Technology. Cambridge, UK.
  • Harrison, A., Derwent, G., Enticknap, A., Rose, F., & Attree, E. (2002). The role of virtual reality technology in the assessment and training of inexperienced powered wheelchair users. Disability and Rehabilitation, 24(11–12), 599–606. doi:10.1080/09638280110111360
  • Harrison, C. S., Dall, P., Grant, P., Granat, M., Maver, T., & Conway, B. (2000). Development of a wheelchair virtual reality platform for use in evaluating wheelchair access. In P. Sharkey., Cesarani, A., Pugnetti, L., and Rizzo, A (Eds.), Proceedings of the 3rd International conference on disability, VR and associated technologies. (ICDVRAT 2000). ICDVRAT. The University of Reading, Reading, pp400. ISBN 0704911426. Alghero, Italy.
  • Harrison, C. S., Grant, M., & Conway, B. A. (2004). Haptic interfaces for wheelchair navigation in the built environment. Presence: Teleoperators and Virtual Environments, 13(5), 520–534. doi:10.1162/1054746042545265
  • Harrison, C. S., Grant, P., & Conway, B. (2010). Enhancement of a virtual reality wheelchair simulator to include qualitative and quantitative performance metrics. Assistive Technology, 22(1), 20–31. doi:10.1080/10400430903520223
  • Headleand, C. J., Day, T., Pop, S., Ritsos, P., & John, N. (2016). A cost-effective virtual environment for simulating and training powered wheelchairs manoeuvres. Studies in Health Technology and Informatics, 220, 134.
  • Headleand, C. J., Day, T., Pop, S. R., Ritsos, P. D., & John, N. W. (2015). Challenges and technologies for low-cost wheelchair simulation. Eurographics Workshop on Visual Computing for Biology and Medicine, Chester, UK.
  • Houtenville, A. J., Brucker, D. L., & Lauer, E. A. (2016). Annual compendium of disability statistics: 2015, Durham, NH: University of New Hampshire.
  • HTC Vive VR System. (2017), Retrieved May 2, 2017, from https://www.vive.com/us/product/vive-virtual-reality-system
  • Inman, D. P., Loge, K., Cram, A., & Peterson, M. (2011). Learning to drive a wheelchair in virtual reality. Journal of Special Education Technology, 26(3), 21–34. doi:10.1177/016264341102600303
  • Kamaraj, D. C., Dicianno, B. E., Mahajan, H. P., Buhari, A. M., & Cooper, R. A. (2016a). Interrater reliability of the power mobility road test in the virtual reality-based simulator-2. Archives of Physical Medicine and Rehabilitation, 97(7), 1078–1084. doi:10.1016/j.apmr.2016.02.005
  • Kamaraj, D. C., Dicianno, B. E., Mahajan, H. P., Buhari, A. M., & Cooper, R. A. (2016b). Stability and workload of the virtual reality-based simulator-2. Archives of Physical Medicine and Rehabilitation, 97(7), 1085–1092. doi:10.1016/j.apmr.2016.01.032
  • Kamaraj, D. C., Mahajan, H. P., Dicianno, B. E., Terhorst, L., & Cooper, R. (2016). discriminative ability of the quantitative electric powered wheelchair driving metrics in VRSIM-2. Archives of Physical Medicine and Rehabilitation, 97, 10. doi:10.1016/j.apmr.2016.08.139
  • Kaye, H. S., Kang, T., & LaPlante, M. P. (2000). Mobility device use in the United States (Vol. 14). Washington, DC: National Institute on Disability and Rehabilitation Research, US Department of Education .
  • Kirby, R. L. (2008). Wheelchair Skills Program (WSP). Version 4.1. Wheelchair Skills Test (WST) Manual. Retrieved May 2, 2017, from www.wheelchairskillsprogram.ca.
  • Kraus, L. (2017). 2016 Disability statistics annual reports - A publication of the rehabilitation research and training center on disability statistics and demographics. Durham, NH: University of New Hampshire.
  • Levac, D., Colquhoun, H., & O’Brien, K. K. (2010). Scoping studies: Advancing the methodology. Implementation Science, 5(1), 69. doi:10.1186/1748-5908-5-69
  • Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P., Clarke, M., Devereaux P. J., Kleijnen J., Moher D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Medicine, 6(7), e1000100. doi:10.1371/journal.pmed.1000100
  • Linden, M. A., Whyatt, C., Craig, C., & Kerr, C. (2013). Efficacy of a powered wheelchair simulator for school aged children: A randomized controlled trial. Rehabilitation Psychology, 58(4), 405. doi:10.1037/a0034088
  • Liu, L., Wang, J., & Chen, W. (2014). A virtual simulation and driver evaluation platform for smart wheelchairs. International Conference on Life System Modeling and Simulation and International Conference on Intelligent Computing for Sustainable Energy and Environment (pp. 307–318). Shanghai, China: Springer.
  • Mahajan, H. P. (2012). Development and validation of simulators for power wheelchair driving evaluations (PhD thesis). University of Pittsburgh, Pittsburgh, PA.
  • Mahajan, H. P., Dicianno, B. E., Cooper, R. A., & Ding, D. (2013). Assessment of wheelchair driving performance in a virtual reality-based simulator. The Journal of Spinal Cord Medicine, 36(4), 322–332. doi:10.1179/2045772313Y.0000000130
  • Majdolashrafi, M., Ahmadabadi, M. N., & Ghazavi, A. (2002). A desktop virtual environment to train motorized wheelchair driving. Systems, Man and Cybernetics, 2002 IEEE International Conference on (Vol. 4, p. 5). Yasmine Hammamet, Tunisia: IEEE.
  • Maxhall, M., Backman, A., Holmlund, K., Hedman, L., Sondell, B., & Bucht, G. (2004). Participants responses to a stroke training simulator. Proceeding of ICDVRAT, 4, 225–230.
  • Morere, Y., Bourhis, G., Cosnuau, K., Guilmois, G., Blangy, E., & Rumilly, E. (2015). ViEW, A wheelchair simulator for driving analysis. Virtual rehabilitation proceedings (ICVR), 2015 International Conference on (pp. 100–105). Valencia, Spain: IEEE.
  • Nichols, S., & Patel, H. (2002). Health and safety implications of virtual reality: A review of empirical evidence. Applied Ergonomics, 33(3), 251–271.
  • Niniss, H., Inoue, T. (2003). Simulation system for powered wheelchair: Evaluation of driving skills using virtual reality. In G. Craddock (Ed.), Assistive technology - shaping the future. Amsterdam, Netherlands: IOS Press.
  • Niniss, H., & Inoue, T. (2006a). Electric wheelchair simulator for rehabilitation of persons with motor disability. Symposium on Virtual Reality VIII (Proceedings), Belém, PA.
  • Niniss, H., & Inoue, T. (2006b). Assessment of driving skills using virtual reality: Comparative survey on experts and unskilled users of electric wheelchairs. Technology and Disability, 18(4), 217–226.
  • Niniss, H., & Nadif, A. (2000). Simulation of the behaviour of a powered wheelchair using virtual reality. 3rd International Conference on Disability, Virtual Reality and Associated Technologies (pp. 9–14), Sardinia, Italy.
  • Nunnerley, J., Gupta, S., Snell, D., & King, M. (2016). Training wheelchair navigation in immersive virtual environments for patients with spinal cord injury–End-user input to design an effective system. Disability and Rehabilitation: Assistive Technology, 12(4), 1–7.
  • Oberhauser, M., & Dreyer, D. (2017). A virtual reality flight simulator for human factors engineering. Cognition, Technology & Work, 19(2–3), 263–277. doi:10.1007/s10111-017-0421-7
  • Oculus VR. (2017). Retrieved May 2, 2017, from https://www.oculus.com/
  • Onyango, S. O., Hamam, Y., Djouani, K., & Daachi, B. (2015). Identification of wheelchair user steering behaviour within indoor environments. Robotics and Biomimetics (ROBIO), 2015 IEEE International Conference on (pp. 2283–2288). Zhuhai, China: IEEE.
  • Onyango, S. O., Hamam, Y., Djouani, K., Daachi, B., & Steyn, N. (2016). A driving behaviour model of electrical wheelchair users. Computational intelligence and neuroscience, 2016. doi:10.1155/2016/7189267
  • Panadero, C., de la Cruz Barquero, V., Kloos, C. D., & Núñez, D. M. (2014). PhyMEL-WS: Physically experiencing the virtual world. Insights into mixed reality and flow state on board a wheelchair simulator. Journal of Universal Computer Science, 20(12), 1629–1648.
  • Panadero, C., & Kloos, C. D. (2013). PhyMEL. A framework to integrate physical, mental and emotional learning in meaningfull experiences and multidimensional reports. Proceedings of 3rd European Immersive Education Summit, London, UK, 203–209.
  • Pearlman, J., Cooper, R. A., Krizack, M., Lindsley, A., Wu, Y., Reisinger, K. D., Armstrong, W., Casanova, H., Chhabra, H. S., Noon J. (2008). Lower-limb prostheses and wheelchairs in low-income countries [an overview]. IEEE Engineering in Medicine and Biology Magazine, 27, 2. doi:10.1109/EMB.2007.907372
  • Pithon, T., Weiss, T., Richir, S., & Klinger, E. (2009). Wheelchair simulators: A review. Technology and Disability, 21(1, 2), 1–10.
  • Pogorelov, D., Yazykov, V., Lysikov, N., Oztemel, E., Arar, O. F., & Rende, F. S. (2017). Train 3D: The technique for inclusion of three-dimensional models in longitudinal train dynamics and its application in derailment studies and train simulators. Vehicle System Dynamics, 55(4), 583–600. doi:10.1080/00423114.2016.1273532
  • Richir, S., Pineau, S., Monacelli, É., Goncalves, F., Malafosse, B., Dumas, C., Schmid, A., Perret, J. (2015). Design of portable and accessible platform in charge of wheelchair feedback immersion. Virtual Reality (VR), 2015 IEEE (pp. 389–390). Arles, France: IEEE.
  • Rodriguez, N. (2015). Development of a wheelchair simulator for children with multiple disabilities. Virtual and Augmented Assistive Technology (VAAT), 2015 3rd IEEE VR International Workshop on (pp. 19–21). Arles, France: IEEE.
  • Rossol, N., Cheng, I., Bischof, W. F., & Basu, A. (2011). A framework for adaptive training and games in virtual reality rehabilitation environments. Proceedings of the 10th International Conference on Virtual Reality Continuum and Its Applications in Industry (pp. 343–346). Hong Kong, China: ACM.
  • Routhier, F., Lettre, J., Miller, W. C., Borisoff, J. F., Keetch, K., Mitchell, I. M., Team, C. R., CanWheel Research Team. (2016). Data logger technologies for manual wheelchairs: A scoping review. Assistive Technology, 30(2), 51–58.
  • Ryan, M. L. (2001). Narrative as virtual reality: Immersion and interactivity in literature and electronic media. Baltimora, MD: Johns Hopkins University Press.
  • Schultheis, M. T., Rebimbas, J., Mourant, R., & Millis, S. R. (2007). Examining the usability of a virtual reality driving simulator. Assistive Technology, 19(1), 1–10. doi:10.1080/10400435.2007.10131860
  • Schultheis, M. T., & Rizzo, A. A. (2001). The application of virtual reality technology in rehabilitation. Rehabilitation Psychology, 46(3), 296. doi:10.1037/0090-5550.46.3.296
  • Slater, M. (2009). Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 364(1535), 3549–3557. doi:10.1098/rstb.2009.0138
  • Slater, M. (2014). Grand challenges in virtual environments. Frontiers in Robotics and AI, 1, 3. doi:10.3389/frobt.2014.00003
  • Slater, M., & Sanchez-Vives, M. V. (2016). Enhancing our lives with immersive virtual reality. Frontiers in Robotics and AI, 3, 74. doi:10.3389/frobt.2016.00074
  • Slater, M., Usoh, M., & Steed, A. (1994). Depth of presence in virtual environments. Presence: Teleoperators & Virtual Environments, 3(2), 130–144. doi:10.1162/pres.1994.3.2.130
  • Smith, E. M., Sakakibara, B. M., & Miller, W. C. (2016). A review of factors influencing participation in social and community activities for wheelchair users. Disability and Rehabilitation: Assistive Technology, 11(5), 361–374.
  • Sonar, A. V., Burdick, K. D., Begin, R. R., Resch, E. M., Thompson, E. M., Thacher, E., Searleman, J., Fulk, G., Carroll, J. J. (2005). Development of a virtual reality-based power wheel chair simulator. Mechatronics and Automation, 2005 IEEE International Conference (Vol. 1, pp. 222–229). Ontario, Canada: IEEE.
  • Spaeth, D. M., Mahajan, H., Karmarkar, A., Collins, D., Cooper, R. A., & Boninger, M. L. (2008). Development of a wheelchair virtual driving environment: Trials with subjects with traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 89(5), 996–1003. doi:10.1016/j.apmr.2007.11.030
  • Statista. 2018. The statistic portal. Global wheelchair market volume in 2010 and 2018. Retrieved July 30, 2018, from https://www.statista.com/statistics/485637/world-wheelchair-market-volume-by-region/
  • Stewart, D. (1965). A platform with six degrees of freedom. Proceedings of the Institution of Mechanical Engineers, 180(1), 371–386. doi:10.1243/PIME_PROC_1965_180_029_02
  • Steyn, N., Hamam, Y., Monacelli, E., & Djouani, K. (2015). Modelling and design of an augmented reality differential drive mobility aid in an enabled environment. Simulation Modelling Practice and Theory, 51, 115–134. doi:10.1016/j.simpat.2014.11.006
  • Sutcliffe, A., Gault, B., & Shin, J.-E. (2005). Presence, memory and interaction in virtual environments. International Journal of Human-Computer Studies, 62(3), 307–327. doi:10.1016/j.ijhcs.2004.11.010
  • Takuma, I., Shino, M., Inoue, T., & Kamata, M. (2009). Development of a powered wheelchair driving simulator for research and development use. Journal of Mechanical Systems for Transportation and Logistics, 2(2), 90–101. doi:10.1299/jmtl.2.90
  • Tao, G., & Archambault, P. (2015). Using a 3D hand motion controller in a virtual power wheelchair simulator for navigation-reaching. Virtual Rehabilitation Proceedings (ICVR), 2015 International Conference on (pp. 137–138). Valencia, Spain: IEEE.
  • Tao, G., & Archambault, P. S. (2016). Powered wheelchair simulator development: Implementing combined navigation-reaching tasks with a 3D hand motion controller. Journal of Neuroengineering and Rehabilitation, 13(1), 3. doi:10.1186/s12984-016-0112-2
  • Webster, J. S., McFarland, P. T., Rapport, L. J., Morrill, B., Roades, L. A., & Abadee, P. S. (2001). Computer-assisted training for improving wheelchair mobility in unilateral neglect patients. Archives of Physical Medicine and Rehabilitation, 82(6), 769–775. doi:10.1053/apmr.2001.23201
  • Witmer, B. G., & Singer, M. J. (1998). Measuring presence in virtual environments: A presence questionnaire. Presence: Teleoperators and Virtual Environments, 7(3), 225–240. doi:10.1162/105474698565686
  • Zatla, H., Hadj-Abdelkader, A., Morere, Y., & Bourhis, G. (2015). OPCM model application on a 3D simulator for powered wheelchair. Virtual Rehabilitation Proceedings (ICVR), 2015 International Conference on (pp. 131–132). Valencia, Spain: IEEE.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.