152
Views
0
CrossRef citations to date
0
Altmetric
Research Article

RESNA position on the application of ultralight manual wheelchairs

, PhD, DPT, ATPORCID Icon, , PT, DPT, ATP/SMS, , PhD, ATP/RET, , MOT, OTR/L, ATP, , MSPT, ATP, , OTR/L, ATP, , PT, MS, ABDA, , OTD, OTR/L & , MSPT, ATP show all

References

  • Abe, H., Inoue, K., & Kozuka, N. (2019). A preliminary evaluation of energy efficiency for children with cerebral palsy for driving a manual wheelchair and walking: Use of the total heart beat index. Developmental Neurorehabilitation, 23(6), 383–389. https://doi.org/10.1080/17518423.2019.1692947
  • ANSI/RESNA. (2019). American national standard for wheelchairs.Volume 1: Requirements and d test methods for wheelchairs (including scooters). https://www.resna.org/at-standards
  • Arledge, S., Armstrong, W., Babinec, M., Dicianno, B. E., Digiovine, C., Dyson-Hudson, T., Pederson J., Piriano J., Plummer T., Rosen L., & Stogner, J. (2011). RESNA wheelchair service provision guide. Resna (Nj1). https://eric.ed.gov/?id=ED534426
  • Asheghan, M., Hollisaz, M. T., Taheri, T., Kazemi, H., & Aghda, A. K. (2016). The prevalence of carpal tunnel syndrome among long-term manual wheelchair users with spinal cord injury: A cross-sectional study. The Journal of Spinal Cord Medicine, 39(3), 265–271. https://doi.org/10.1179/2045772315Y.0000000033
  • Boninger, M. L., Souza, A. L., Cooper, R. A., Fitzgerald, S. G., Koontz, A. M., & Fay, B. T. Propulsion patterns and pushrim biomechanics in manual wheelchair propulsion. (2002). Archives of Physical Medicine & Rehabilitation, 83(5), 718–723. PMID: 11994814.https://doi.org/10.1053/apmr.2002.32455
  • Booka, M., Yoneda, I., Hashizume, T., Lee, H., Oku, H., & Fujisawa, S. (2015). Effect of tire pressure to physical workload at operating a manual wheelchair. Studies in Health Technology and Informatics, 217, 929–934. https://doi.org/10.3233/978-1-61499-566-1-929
  • Brubaker, C. E. (1986). Wheelchair prescription: An analysis of factors that affect mobility and performance. Journal of Rehabilitation Research and Development, 23(4), 19–26.
  • Caspall, J. J., Seligsohn, E., Dao, P. V., & Sprigle, S. (2013). Changes in inertia and effect on turning effort across different wheelchair configurations. Journal of Rehabilitation Research and Development, 50(10), 1353–1362. https://doi.org/10.1682/JRRD.2012.12.0219
  • Chan, F. H. N., Eshraghi, M., Alhazmi, M. A., & Sawatzky, B. J. (2018). The effect of caster types on global rolling resistance in manual wheelchairs on indoor and outdoor surfaces. Assistive Technology: The Official Journal of RESNA, 30(4), 176–182. https://doi.org/10.1080/10400435.2017.1307880
  • Charbonneau, R., Kirby, L., & Thompson, K. (2013). Manual wheelchair propulsion by people with hemiplegia: Within-participant comparisons of forward versus backward techniques. Archives of Physical Medicine and Rehabilitation, 94(9), 1707–1713. https://doi.org/10.1016/j.apmr.2013.03.001
  • Cloud, B. A., Zhao, K. D., Ellingson, A. M., Nassr, A., Windebank, A. J., & An, K. N. (2017). Increased seat dump angle in a manual wheelchair is associated with changes in thoracolumbar lordosis and scapular kinematics during propulsion. Archives of Physical Medicine and Rehabilitation, 98(10), 2021. https://doi.org/10.1016/j.apmr.2017.02.014
  • Cooper, R. A. (1996). A perspective on the ultralight wheelchair revolution. Technology and Disability, 5(3–4), 383–392. https://doi.org/10.3233/TAD-1996-53-419
  • Cowan, R. E., Nash, M. S., Collinger, J. L., Koontz, A. M., & Boninger, M. L. (2009). Impact of surface type, wheelchair weight, and axle position on wheelchair propulsion by novice older adults. Archives of Physical Medicine and Rehabilitation, 90(7), 1076–1083. https://doi.org/10.1016/j.apmr.2008.10.034
  • de Klerk, R., Lutjeboer, T., Vegter, R. J., & van der Woude, L. H. (2018). Practice-based skill acquisition of pushrim-activated power-assisted wheelchair propulsion versus regular handrim propulsion in novices. Journal of Neuroengineering and Rehabilitation, 15(1), 1–10. https://doi.org/10.1186/s12984-018-0397-4
  • DiGiovine, C. D., Rosen, L., Berner, T., Betz, K., Roesler, T., & Schmeler, M. (2012). RESNA position on the application of ultralight manual wheelchairs. https://www.resna.org/Portals/0/Documents/Position%20Papers/UltraLightweightManualWheelchairs.pdf
  • Dysterheft, J. L., Rice, I. M., & Rice, L. A. (2015). Influence of handrim wheelchair propulsion training in adolescent wheelchair users, a pilot study. Frontiers in Bioengineering and Biotechnology, 3, 68. https://doi.org/10.3389/fbioe.2015.00068
  • Ekiz, T., Özbudak Demir, S., Sümer, H. G., & Özgirgin, N. (2017). Wheelchair appropriateness in children with cerebral palsy: A single center experience. Journal of Back and Musculoskeletal Rehabilitation, 30(4), 825–828. https://doi.org/10.3233/BMR-150522
  • Eydieux, N., Hybois, S., Siegel, A., Bascou, J., Vaslin, P., Pillet, H., Fodé, P., & Sauret, C. (2020). Changes in wheelchair biomechanics within the first 120 minutes of practice: Spatiotemporal parameters, handrim forces, motor force, rolling resistance and fore-aft stability. Disability and Rehabilitation Assistive Technology, 15(3), 305–313. https://doi.org/10.1080/17483107.2019.1571117
  • Fallot, C., Bascou, J., Pillet, H., & Sauret, C. (2019). Manual wheelchair’s turning resistance: Swivelling resistance parameters of front and rear wheels on different surfaces. Disability and Rehabilitation Assistive Technology, 16(3), 324–331. https://doi.org/10.1080/17483107.2019.1675781
  • Ferrero, G., Mijno, E., Actis, M., Zampa, A., Ratto, N., Arpaia, A., Massè, A., Actis, M. V., & Massè, A. (2015). Risk factors for shoulder pain in patients with spinal cord injury: A multicenter study. Musculoskeletal Surgery, 99(S1), 53–56. https://doi.org/10.1007/s12306-015-0363-2
  • Finley, M. A., & Ebaugh, D. (2017). Association of pectoralis minor muscle extensibility, shoulder mobility, and duration of manual wheelchair use. Archives of Physical Medicine and Rehabilitation, 98(10), 2028–2033. https://doi.org/10.1016/j.apmr.2017.03.029
  • Fournier Belley, A., Gagnon, D. H., Routhier, F., & Roy, J. S. (2017). Ultrasonographic measures of the acromiohumeral distance and supraspinatus tendon thickness in manual wheelchair users with spinal cord injury. Archives of Physical Medicine and Rehabilitation, 98(3), 517–524. https://doi.org/10.1016/j.apmr.2016.06.018
  • Gebrosky, B., Bridge, A., O’Donnell, S., Grindle, G. G., Cooper, R., & Cooper, R. A. (2020). Comparing the performance of ultralight folding manual wheelchairs using standardized tests. Disability and Rehabilitation Assistive Technology, 17(1), 40–49. https://doi.org/10.1080/17483107.2020.1754928
  • Gebrosky, B., Pearlman, J., & Cooper, R. (2018). Comparison of high-strength aluminum ultralight wheelchairs using ANSI/RESNA testing standards. Topics in Spinal Cord Injury Rehabilitation, 24(1), 63–77. https://doi.org/10.1310/sci16-00057
  • Gebrosky, B., Pearlman, J., Cooper, R. A., Cooper, R., & Kelleher, A. (2013). Evaluation of lightweight wheelchairs using ANSI/RESNA testing standards. Journal of Rehabilitation Research and Development, 50(10), 1373–1389. https://doi.org/10.1682/JRRD.2012.08.0155
  • Giesbrecht, E., Best, K. L., & Miller, W. C. (2015). Pushing spokes for older folks: Two novel approaches for improving manual wheelchair use among older adults. Occupational Therapy Now, 17(1), 17–19. https://doi.org/10.1186/s12877-015-0092-2
  • Giesbrecht, E. M., & Miller, W. C. (2019). Effect of an mHealth wheelchair skills training program for older adults: A feasibility randomized controlled trial. Archives of Physical Medicine and Rehabilitation, 100(11), 2159–2166. https://doi.org/10.1016/j.apmr.2019.06.010
  • Hastings, J. D. (2000). Seating assessment and planning. Physical Medicine & Rehabilitation Clinics of North America, 11(1), 183–207. https://doi.org/10.1016/S1047-9651(18)30154-2
  • Heinrichs, N. D., Kirby, R. L., Smith, C., Russell, K. F. J., Theriault, C. J., & Doucette, S. P. (2020a). Effect of seat height on manual wheelchair foot propulsion, a repeated-measures crossover study: Part 1 – Wheeling forward on a smooth level surface. Disability and Rehabilitation Assistive Technology, 16(8), 831–839. https://doi.org/10.1080/17483107.2020.1741036
  • Heinrichs, N. D., Kirby, R. L., Smith, C., Russell, K. F. J., Theriault, C. J., & Doucette, S. P. (2020b). Effect of seat height on manual wheelchair foot propulsion, a repeated-measures crossover study: Part 2 – Wheeling backward on a soft surface. Disability and Rehabilitation Assistive Technology, 17(3), 325–330. https://doi.org/10.1080/17483107.2020.1782490
  • Henderson, G. V., Boninger, M. L., Dicianno, B. E., & Worobey, L. A. (2020). Type and frequency of wheelchair repairs and resulting adverse consequences among veteran wheelchair users. Disability and Rehabilitation: Assistive Technology, 17(3), 1–7. https://doi.org/10.1080/17483107.2020.1785559
  • Hogaboom, N. S., Worobey, L. A., Houlihan, B. V., Heinemann, A. W., & Boninger, M. L. (2018, Oct). Wheelchair breakdowns are associated with pain, pressure injuries, rehospitalization, and self-perceived health in full-time wheelchair users with spinal cord injury. Archives of Physical Medicine & Rehabilitation, 99(10), 1949–1956. Epub 2018 Apr 24. PMID: 29698640. https://doi.org/10.1016/j.apmr.2018.04.002
  • Hosseini, S. M., Oyster, M. L., Kirby, R. L., Harrington, A. L., & Boninger, M. L. (2012). Manual wheelchair skills capacity predicts quality of life and community integration in persons with spinal cord injury. Archives of Physical Medicine and Rehabilitation, 93(12), 2237–2243. https://doi.org/10.1016/j.apmr.2012.05.021
  • International Organization for Standardization. (1998). International standard wheelchairs-part 8: Requirements and test methods for static, impact and fatigue strengths. https://www.iso.org/standard/64902.html
  • Kauzlarich, J. J., & Thacker, J. G. (1985). Wheelchair tire rolling resistance and fatigue. The Journal of Rehabilitation Research and Development, 22(3), 25–41. https://doi.org/10.1682/jrrd.1985.07.0025
  • Keeler, L., Kirby, R. L., Parker, K., McLean, K. D., & Hayden, J. A. (2019). Effectiveness of the Wheelchair Skills Training Program: A systematic review and meta-analysis. Disability and Rehabilitation Assistive Technology, 14(4), 391–409. https://doi.org/10.1080/17483107.2018.1456566
  • Khalili, M., Eugenio, A., Wood, A., Van der Loos, M., Mortenson, W. B., & Borisoff, J. (2021). Perceptions of power-assist devices: Interviews with manual wheelchair users. Disability and Rehabilitation: Assistive Technology, 1–11. https://doi.org/10.1080/17483107.2021.1906963
  • Kirby, R. L., Worobey, L. A., Cowan, R., Pedersen, J. P., Heinemann, A. W., Dyson-Hudson, T. A., Shea, M., Smith, C., Rushton, P. W., & Boninger, M. L. (2016). Wheelchair skills capacity and performance of manual wheelchair users with spinal cord injury. Archives of Physical Medicine and Rehabilitation, 97(10), 1761–1769. https://doi.org/10.1016/j.apmr.2016.05.015
  • Lange, M., & Minkel, J. (Eds.). (2017). Seating and wheeled mobility: A clinical resource guide. Slack Incorporated.
  • Lin, Y. S., Boninger, M., Worobey, L., Farrokhi, S., & Koontz, A. (2014). Effects of repetitive shoulder activity on the subacromial space in manual wheelchair users. BioMed Research International, 2014, 583951. https://doi.org/10.1155/2014/583951
  • Lin, J. T., Huang, M., & Sprigle, S. (2015). Evaluation of wheelchair resistive forces during straight and turning trajectories across different wheelchair configurations using free-wheeling coast-down test. Journal of Rehabilitation Research and Development, 52(7), 763–774. https://doi.org/10.1682/JRRD.2014.10.0235
  • Lin, J. T., & Sprigle, S. (2020). The influence of operator and wheelchair factors on wheelchair propulsion effort. Disability and Rehabilitation Assistive Technology, 15(3), 328–335. https://doi.org/10.1080/17483107.2019.1578425
  • Magasi, S., Wong, A., Miskovic, A., Tulsky, D., & Heinemann, A. W. (2018). Mobility device quality affects participation outcomes for people with disabilities: A structural equation modeling analysis. Archives of Physical Medicine and Rehabilitation, 99(1), 1–8. https://doi.org/10.1016/j.apmr.2017.06.030
  • Mandy, A., Chesani, F., & Mezadri, T. (2019). An exploration of the experiences of Brazilian hemiplegic manual wheelchair users. Disability and Rehabilitation Assistive Technology, 15(6), 637–642. https://doi.org/10.1080/17483107.2019.1604825
  • Mashola, M. K., Korkie, E., & Mothabeng, D. J. (2021). Pain and its impact on functioning and disability in manual wheelchair users with spinal cord injury: A protocol for a mixed-methods study. British Medical Journal Open, 11(1), e044152. https://doi.org/10.1136/bmjopen-2020-044152
  • Medicare Coverage Database. (2020). Manual Wheelchair bases - Policy article A52497. https://www.cms.gov/medicare-coverage-database/view/article.aspx?articleId=52497
  • Medola, F. O., Elui, V. M. C., Santana, C. D. S., & Fortulan, C. A. (2014). Aspects of manual wheelchair configuration affecting mobility: A review. Journal of Physical Therapy Science, 26(2), 313–318. https://doi.org/10.1589/jpts.26.313
  • Misch, J., Huang, M., Sprigle, S., & Jan, Y.-K. (2020). Modeling manual wheelchair propulsion cost during straight and curvilinear trajectories. PloS One, 15(6), e0234742. https://doi.org/10.1371/journal.pone.0234742
  • Moon, Y., Jayaraman, C., Hsu, I. M. K., Rice, I. M., Hsiao-Wecksler, E. T., & Sosnoff, J. J. (2013). Variability of peak shoulder force during wheelchair propulsion in manual wheelchair users with and without shoulder pain. Clinical Biomechanics (Bristol, Avon), 28(9–10), 967–972. https://doi.org/10.1016/j.clinbiomech.2013.10.004
  • Mozingo, J. D., Akbari-Shandiz, M., Murthy, N. S., Van Straaten, M. G., Schueler, B. A., Holmes, D. R., 3rd, McCollough, C. H., & Zhao, K. D. (2020). Shoulder mechanical impingement risk associated with manual wheelchair tasks in individuals with spinal cord injury. Clinical Biomechanics (Bristol, Avon), 71, 221–229. https://doi.org/10.1016/j.clinbiomech.2019.10.017
  • Murata, T., Asami, T., Matsuo, K., Kubo, A., & Okigawa, E. (2014). Effects of wheelchair seat-height settings on alternating lower limb propulsion with both legs. Assistive Technology: The Official Journal of RESNA, 26(3), 151–156. https://doi.org/10.1080/10400435.2014.888108
  • Oliveira, N., Blochlinger, S., Ehrenberg, N., Defosse, T., Forrest, G., Dyson-Hudson, T., & Barrance, P. (2019). Kinematics and pushrim kinetics in adolescents propelling high-strength lightweight and ultra-lightweight manual wheelchairs. Disability and Rehabilitation Assistive Technology, 14(3), 209–216. https://doi.org/10.1080/17483107.2017.1417499
  • Ott, J., Henderson, T., Wilson-Jene, H., Koontz, A., & Pearlman, J. (2020). A high prevalence of manual wheelchair rear-wheel misalignment could be leading to increased risk of repetitive strain injuries. Disability and Rehabilitation Assistive Technology, 1–9. https://doi.org/10.1080/17483107.2021.1890843
  • Ott, J., & Pearlman, J. (2021). Scoping review of the rolling resistance testing methods and factors that impact manual wheelchairs. Journal of Rehabilitation and Assistive Technologies Engineering, 8, 2055668320980300. https://doi.org/10.1177/2055668320980300
  • Ott, J., Wilson-Jene, H., Koontz, A., & Pearlman, J. (2022, Aug). Evaluation of rolling resistance in manual wheelchair wheels and casters using drum-based testing. Disability and Rehabilitation: Assistive Technology, 17(6), 719–730. https://doi.org/10.1080/17483107.2020.1815088
  • Patel, R. M., Gelber, J. D., & Schickendantz, M. S. (2018). The weight-bearing shoulder. The Journal of the American Academy of Orthopaedic Surgeons, 26(1), 3–13. https://doi.org/10.5435/JAAOS-D-15-00598
  • Presperin Pedersen, J., Smith, C., Dahlin, M., Henry, M., Jones, J., McKenzie, K., Sevigny, M., & Yingling, L. (2020). Wheelchair backs that support the spinal curves: Assessing postural and functional changes. The Journal of Spinal Cord Medicine, 45(2), 194–203. https://doi.org/10.1080/10790268.2020.1760530
  • Rammer, J. R., Krzak, J. J., Slavens, B. A., Winters, J. M., Riedel, S. A., & Harris, G. F. (2019). Considering propulsion pattern in therapeutic outcomes for children who use manual wheelchairs. Pediatric Physical Therapy: The Official Publication of the Section on Pediatrics of the American Physical Therapy Association, 31(4), 360–368. https://doi.org/10.1097/PEP.0000000000000649
  • Regier, A. D., Berryman, A., Hays, K., Smith, C., Staniszewski, K., & Gerber, D. (2014). Two approaches to manual wheelchair configuration and effects on function for individuals with acquired brain injury. NeuroRehabilitation, 35(3), 467–473. https://doi.org/10.3233/NRE-141138
  • Requejo, P. S., Furumasu, J., & Mulroy, S. J. (2015). Evidence-based strategies for preserving mobility for elderly and aging manual wheelchair users. Topics in Geriatric Rehabilitation, 31(1), 26–41. https://doi.org/10.1097/TGR.0000000000000042
  • Requejo, P. S., Mulroy, S. J., Ruparel, P., Hatchett, P. E., Haubert, L. L., Eberly, V. J., & Gronley, J. K. (2015). Relationship between hand contact angle and shoulder loading during manual wheelchair propulsion by individuals with paraplegia. Topics in Spinal Cord Injury Rehabilitation, 21(4), 313–324. https://doi.org/10.1310/sci2104-313
  • Sagawa, Y., Watelain, E., Lepoutre, F., & Thevenon, A. (2010). Effects of wheelchair mass on the physiologic responses, perception of exertion, and performance during various simulated daily tasks. Archives of Physical Medicine and Rehabilitation, 91(8), 1248–1254. https://doi.org/10.1016/j.apmr.2010.05.011
  • Sakakibara, B. M., Miller, W. C., Eng, J. J., Backman, C. L., & Routhier, F. (2014). Influences of wheelchair-related efficacy on life-space mobility in adults who use a wheelchair and live in the community. Physical Therapy, 94(11), 1604–1613. https://doi.org/10.2522/ptj.20140113
  • Sakakibara, B. M., Routhier, F., & Miller, W. C. (2017). Wheeled-mobility correlates of life-space and social participation in adult manual wheelchair users aged 50 and older. Disability and Rehabilitation Assistive Technology, 12(6), 592–598. https://doi.org/10.1080/17483107.2016.1198434
  • Sauret, C., Vaslin, P., Lavaste, F., de Saint Remy, N., & Cid, M. (2013). Effects of user’s actions on rolling resistance and wheelchair stability during handrim wheelchair propulsion in the field. Medical Engineering & Physics, 35(3), 289–297. https://doi.org/10.1016/j.medengphy.2012.05.001
  • Sawatzky, B., DiGiovine, C., Berner, T., Roesler, T., & Katte, L. (2015). The need for updated clinical practice guidelines for preservation of upper extremities in manual wheelchair users. American Journal of Physical Medicine & Rehabilitation, 94(4), 313–324. https://doi.org/10.1097/PHM.0000000000000203
  • Schnorenberg, A., & Slavens, B. A. (2016). Pediatric stroke patterns during manual wheelchair mobility. Archives of Physical Medicine & Rehabilitation, 97(10), e121.
  • Slavens, B. A., Schnorenberg, A. J., Aurit, C. M., Graf, A., Krzak, J. J., Reiners, K., Vogel, L. C., & Harris, G. F. (2015). Evaluation of pediatric manual wheelchair mobility using advanced biomechanical methods. BioMed Research International, 2015, 634768. https://doi.org/10.1155/2015/634768
  • Slavens, B. A., Schnorenberg, A. J., Aurit, C. M., Tarima, S., Vogel, L. C., & Harris, G. F. (2015). Biomechanics of pediatric manual wheelchair mobility. Frontiers in Bioengineering and Biotechnology, 3, 137. https://doi.org/10.3389/fbioe.2015.00137
  • Slavens, B. A., Schnorenberg, A. J., Aurit, C. M., Tarima, S., Vogel, L. C., & Harris, G. F. (2015). Biomechanics of pediatric manual wheelchair mobility. Frontiers in Bioengineering and Biotechnology, 3, 137.
  • Slowik, J. S., & Neptune, R. R. (2013). A theoretical analysis of the influence of wheelchair seat position on upper extremity demand. Clinical Biomechanics (Bristol, Avon), 28(4), 378–385. https://doi.org/10.1016/j.clinbiomech.2013.03.004
  • Smith, C., & Kirby, L. (2015). The need for and feasibility of wheelchair skills training in long-term care. Topics in Geriatric Rehabilitation, 31(1), 52–57. https://doi.org/10.1097/TGR.0000000000000049
  • Smith, E. M., Sakakibara, B. M., & Miller, W. C. (2016). A review of factors influencing participation in social and community activities for wheelchair users. Disability and Rehabilitation Assistive Technology, 11(5), 361–374. https://doi.org/10.3109/17483107.2014.989420
  • Sonenblum, S. E., & Sprigle, S. (2017). Wheelchair use in ultra-lightweight wheelchair users. Disability and Rehabilitation Assistive Technology, 12(4), 396–401. https://doi.org/10.1080/17483107.2016.1178819
  • Sprigle, S., & Huang, M. (2015). Impact of mass and weight distribution on manual wheelchair propulsion torque. Assistive Technology: The Official Journal of RESNA, 27(4), 226–235. https://doi.org/10.1080/10400435.2015.1039149
  • Sprigle, S., & Huang, M. (2020). Manual wheelchair propulsion cost across different components and configurations during straight and turning maneuvers. Journal of Rehabilitation and Assistive Technologies Engineering, 7, 2055668320907819. https://doi.org/10.1177/2055668320907819
  • Sprigle, S., Huang, M., & Misch, J. (2019). Measurement of rolling resistance and scrub torque of manual wheelchair drive wheels and casters. Assistive Technology: The Official Journal of RESNA, 34(1), 91–103. https://doi.org/10.1080/10400435.2019.1697907
  • Symonds, A., Holloway, C., Suzuki, T., Smitham, P., Gall, A., & Taylor, S. J. (2016). Identifying key experience-related differences in over-ground manual wheelchair propulsion biomechanics. Journal of Rehabilitation and Assistive Technologies Engineering, 3, 2055668316678362. https://doi.org/10.1177/2055668316678362
  • Taylor, S., Gassaway, J., Heisler-Varriale, L. A., Kozlowski, A., Teeter, L., Labarbera, J., Vargas, C., Natale, A., & Swirsky, A. (2015). Patterns in wheeled mobility skills training, equipment evaluation, and utilization: Findings from the SCI rehab project. Assistive Technology: The Official Journal of RESNA, 27(2), 59–68. https://doi.org/10.1080/10400435.2014.978511
  • Toro, M. L., Worobey, L., Boninger, M. L., Cooper, R. A., & Pearlman, J. (2016). Type and frequency of reported wheelchair repairs and related adverse consequences among people with spinal cord injury. Archives of Physical Medicine and Rehabilitation, 97(10), 1753–1760. https://doi.org/10.1016/j.apmr.2016.03.032
  • van der Woude, I. H., Bouw, A., & Van Wegen, J. (2009). Seat height: Effects on submaximal hand rim wheelchair performance during spinal cord injury rehabilitation. Journal of Rehabilitation Medicine, 41(3), 143–149. https://doi.org/10.2340/16501977-0296
  • Walford, S. L., Requejo, P. S., Mulroy, S. J., & Neptune, R. R. (2019). Predictors of shoulder pain in manual wheelchair users. Clinical Biomechanics (Bristol, Avon), 65, 1–12. https://doi.org/10.1016/j.clinbiomech.2019.03.003
  • World Health Organization. (2002). Towards a common language for functioning, disability and health: ICF. https://www.who.int/standards/classifications
  • Worobey, L. A., Heinemann, A. W., Anderson, K. D., Fyffe, D., Dyson-Hudson, T. A., Berner, T., & and Boninger, M. L. (2021, Apr 9). Factors influencing incidence of wheelchair repairs and consequences among individuals with spinal cord injury. Archives of Physical Medicine and Rehabilitation, S0003-9993(21), 00299–9. Epub ahead of print. PMID: 33845000. https://doi.org/10.1016/j.apmr.2021.01.094
  • Worobey, L. A., Kirby, R. L., Heinemann, A. W., Krobot, E. A., Dyson-Hudson, T. A., Cowan, R. E., Pedersen, J. P., Shea, M., & Boninger, M. L. (2016). Effectiveness of group wheelchair skills training for people with spinal cord injury: A randomized controlled trial. Archives of Physical Medicine and Rehabilitation, 97(10), 1777–1784. https://doi.org/10.1016/j.apmr.2016.04.006
  • Worobey, L. A., McKernan, G., Toro, M., Pearlman, J., Cowan, R. E., Heinemann, A. W., Dyson-Hudson, T. A., Presperin Pendersen, J., Mesoros, B. S., & Boninger, M. L. (2021). Effectiveness of group wheelchair maintenance training for people with spinal cord injury: A randomized controlled trial. Archives of Physical Medicine and Rehabilitation, 103(4), 790–797. https://doi.org/10.1016/j.apmr.2021.02.031
  • Worobey, L., Oyster, M., Nemunaitis, G., Cooper, R., & Boninger, M. L. (2012). Increases in wheelchair breakdowns, repairs, and adverse consequences for people with traumatic spinal cord injury. American Journal of Physical Medicine & Rehabilitation/Association of Academic Physiatrists, 91(6), 463. https://doi.org/10.1097/PHM.0b013e31825ab5ec
  • Zepeda, R., Chan, F., & Sawatzky, B. (2016). The effect of caster wheel diameter and mass distribution on drag forces in manual wheelchairs. Journal of Rehabilitation Research and Development, 53(6), 893–900. https://doi.org/10.1682/JRRD.2015.05.0074

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.