422
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Development of a Granular Cohesive Model for Rolling Contact Fatigue Analysis: Crystal Anisotropy Modeling

, , , &
Pages 469-479 | Received 13 Jan 2015, Accepted 21 Aug 2015, Published online: 26 Apr 2016

References

  • Sadeghi, F., Jalalahmadi, B., Slack, T. S., Raje, N., and Arakere, N. K. (2009), “A Review of Rolling Contact Fatigue,” Journal of Tribology, 131(4), 041403.
  • Olver, A. V. (2005), “The Mechanism of Rolling Contact Fatigue: An Update,” Proceedings of the Institution of Mechanical Engineers - Part J: Journal of Engineering Tribology, 219(5), pp 313–330.
  • Keer, L. M. and Bryant, M. D. (1983), “A Pitting Model for Rolling Contact Fatigue,” Journal of Lubrication Technology, 105(2), pp 198–205.
  • Trollé, B., Baietto, M.-C., Gravouil, A., Mai, S. H., and Prabel, B. (2014), “2D fatigue Crack Propagation in Rails Taking into Account Actual Plastic Stresses,” Engineering Fracture Mechanics, 123, pp 163–181.
  • Pierres, E., Baietto, M.-C., and Gravouil, A. (2011), “Experimental and Numerical Analysis of Fretting Crack Formation Based on 3D X-FEM Frictional Contact Fatigue Crack Model,” Comptes Rendus Mécanique, 339(7–8), pp 532–551.
  • Raje, N., Slack, T., and Sadeghi, F. (2009), “A Discrete Damage Mechanics Model for High Cycle Fatigue in Polycrystalline Materials Subject to Rolling Contact,” International Journal of Fatigue, 31(2), pp 346–360.
  • Blal, N., Daridon, L., Monerie, Y., and Pagano, S. (2012), “Artificial Compliance Inherent to the Intrinsic Cohesive Zone Models: Criteria and Application to Planar Meshes,” International Journal of Fracture, 178(1–2), pp 71–83.
  • Sauzay, M. (2006), “Effet de l'Anisotropie Élastique Cristalline sur la Distribution des Facteurs de Schmid à la Surface des Polycristaux” (“Influence of crystalline elasticity anisotropy on Schmid factor distribution at the free surface of polycrystals”), Comptes Rendus Mécanique, 334(6), pp 353–361.
  • Paulson, N. R., Bomidi, J. A. R., Sadeghi, F., and Evans, R. D. (2014), “Effects of Crystal Elasticity on Rolling Contact Fatigue,” International Journal of Fatigue, 61, pp 67–75.
  • Alley, E. S. and Neu, R. W. (2010), “Microstructure-Sensitive Modeling of Rolling Contact Fatigue,” Interntaional Journal of Fatigue, 32(5), pp 841–850.
  • Romero de la Osa, M., Estevez, R., Olagnon, C., Chevalier, J., and Tallaron, C. (2009), “Modèle Cohésif pour la Propagation Lente de Fissures dans les Céramiques Polycristallines” (“Cohesive zone model and slow crack growth in ceramic polycrystals”), Congrès Français de Mécanique, Marseilles, France, August 24–28.
  • Estevez, R., Romero de la Osa, M., Olagnon, C., and Chevalier, J. (2010), “Cohesive Zone Description and Analysis of Slow Crack Growth in Ceramics,” 13th International Conference on Fracture, Beijing, China, January 4–8.
  • Warner, D. H. and Molinari, J. F. (2006), “Micromechanical Finite Element Modeling of Compressive Fracture in Confined Alumina Ceramic,” Acta Materialia, 54(19), pp 5135–5145.
  • Bomidi, J. A. R., Weinzapfel, N., Sadeghi, F., Liebel, A., and Weber, J. (2013), “An Improved Approach for 3D Rolling Contact Fatigue Simulations with Microstructure Topology,” Tribology Transactions, 56(3), pp 385–399.
  • Bhargava, V., Hahn, G. T., and Rubin, C. A. (1990), “Rolling Contact Deformation, Etching Effects, and Failure of High-Strength Bearing Steel,” Metallurgical Transactions A, 21, pp 1921–1931.
  • Warhadpande, A., Sadeghi, F., Evans, R. D., and Kotzalas, M. N. (2012), “Influence of Plasticity-Induced Residual Stresses on Rolling Contact Fatigue,” Tribology Transactions, 55(4), pp 422–437.
  • Xu, X.-P. and Needleman, A. (1994), “Numerical Simulations of Fast Crack Growth in Brittle Solids,” Journal of the Mechanics and Physics of Solids, 42(9), pp 1397–1434.
  • Nguyen, O., Repetto, E. A., Ortiz, M., and Radovitzky, R. A. (2001), “A Cohesive Model of Fatigue Crack Growth,” International Journal of Fracture, 110, pp 351–359.
  • Luther, T. and Könke, C. (2009), “Polycrystal Models for the Analysis of Intergranular Crack Growth in Metallic Materials,” Engineering Fracture Mechanics, 76(15), pp 2332–2343.
  • ANSYS (2012), ANSYS® Academic Research, Release 14.5, Help System Contact Technology Guide, ANSYS Inc.: Canonsburg, PA.
  • Espinosa, H. D. and Zavattieri, P. D. (2003), “A Grain Level Model for the Study of Failure Initiation and Evolution in Polycrystalline Brittle Materials. Part I: Theory and Numerical Implementation,” Mechanics of Materials, 35(3–6), pp 333–364.
  • Noyel, J. P., Ville, F., Jacquet, P., and Gravouil, A. (2014), “Development of a Granular Cohesive Model for Rolling Contact Fatigue Analysis: Influence of Numerical Parameters,” International Gear Conference 2014, Lyon, France, August 26–28, P. Velex (Ed.), International Gear Conference 2014: 26th-28th August 2014, Lyon, pp 814–824, Elsevier: Cambridge, UK.
  • Kachanov, L. (1986), Introduction to Continuum Damage Mechanics, Martinus Nijhoff Publishers: Dordrecht, Netherlands.
  • Lemaitre, J., Chaboche, J. L., Benallal, A., and Desmorat, R. (2009), Mécanique des Matériaux Solides (Mechanics of solid materials), 3rd ed. Dunod: Paris, France.
  • Lemaitre, J. and Desmorat, R. (2005), Engineering Damage Mechanics, Springer: Berlin, Germany.
  • Longching, C., Qing, C., and Eryu, S., (1989), “Study on Initiation and Propagation Angles of Subsurface Cracks in GCr15 Bearing Steel under Rolling Contact,” Wear, 133, pp 205–218.
  • Qing, C., Eryu, S., Dongmei, Z., Juwen, G., and Fan, Z. (1991), “Measurement of the Critical Size of Inclusions Initiating Contact Fatigue Cracks and Its Application in Bearing Steel,” Wear, 147, pp 285–294.
  • Nélias, D., Dumont, M. L., Champiot, F., Vincent, A., Girodin, D., Fougères, R., and Flamand, L. (1999), “Role of Inclusions, Surface Roughness and Operating Conditions on Rolling Contact Fatigue,” Journal of Tribology, 121(2), pp 240–251.
  • Rabaso, P., Gauthier, T., Diaby, M., and Ville, F. (2013), “Rolling Contact Fatigue: Experimental Study of the Influence of Sliding, Load, and Material Properties on the Resistance to Micropitting of Steel Discs,” Tribology Transactions, 56(2), pp 203–214.
  • Allison, B., Subhash, G., Arakere, N., Haluck, D. A., and Chin, H. (2014), “Influence of Initial Residual Stress on Material Properties of Bearing Steel during Rolling Contact Fatigue,” Tribology Transactions, 57(3), pp 533–545.
  • Courtney, T. H. (1990), Mechanical Behavior of Materials, 2nd ed. McGraw Hill: Long Grove, IL.
  • Hill, R. (1952), “The Elastic Behaviour of a Crystalline Aggregate,” Proceedings of the Physical Society Section A, 65, pp 349–354.
  • Den Toonder, J. M. J., Van Dommelen, J. A. W., and Baaijens, F. P. T. (1999), “The Relation between Single Crystal Elasticity and the Effective Elastic Behaviour of Polycrystalline Materials: Theory, Measurement and Computation,” Modelling and Simulation in Materials Science and Engineering, 7(6), pp 909–928.
  • Besson, J., Cailletaud, G., Chaboche, J. L., and Forest, S. (2001), Mécanique Non Linéaire des Matériaux (Non-Linear Mechanics of Materials), Hermes: Paris, France.
  • Ranganathan, S. and Ostojastarzewski, M. (2008), “Scaling Function, Anisotropy and the Size of RVE in Elastic Random Polycrystals,” Journal of the Mechanics and Physics of Solids, 56(9), pp 2773–2791.
  • El Houdaigui, F., Forest, S., Gourgues, A. F., and Jeulin, D. (2005), “On the Size of the Representative Volume Element for Isotropic Elastic Polycrystalline Copper,” IUTAM Symposium, Beijing, China, June 27–30, Y. L. Bai, Q. S. Zheng, and Y. G. Wei (Eds.) IUTAM Symposium on Mechanical Behavior and Micro-Mechanics of Nanostructured Materials, pp 171–180, Springer: Amsterdam.
  • Berthelot, J. M. (2005), Matériaux Composites (Composite Materials), 4th ed. Lavoisier: Paris.
  • Tvergaard, V. and Hutchinson, J. W. (1998), “Microcracking in Ceramics Induced by Thermal Expansion or Elastic Anisotropy,” Journal of the American Ceramics Society, 71, pp 3157–166.
  • Fallahi, A. and Ataee, A. (2010), “Effects of Crystal Orientation on Stress Distribution Near the Triple Junction in a Tricrystal γ-TiAl,” Materials Science and Engineering A, 527(18–19), pp 4576–4581.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.