3,810
Views
4
CrossRef citations to date
0
Altmetric
Articles

Microbiology in Water-Miscible Metalworking Fluids

&
Pages 1147-1171 | Received 17 Feb 2020, Accepted 29 Apr 2020, Published online: 14 Oct 2020

References

  • D2881. (2019), “Standard Classification for Metalworking Fluids and Related Materials,” ASTM International: West Conshohocken, PA.
  • Brinksmeier, E., Meyer, D., Huesmann-Cordes, A. G., and Herrmann, C. (2015), “Metalworking Fluids—Mechanisms and Performance,” CIRP Annals - Manufacturing Technology, 64, pp 605–628. doi:10.1016/j.cirp.2015.05.003
  • Canter, N. M. (2017), “The Chemistry of Metalworking Fluids,” Metalworking Fluids, 3rd Ed., Byers, J. P. (Ed.), pp 143–169, CRC Press: Boca Raton, FL.
  • Global Lubricants. (2019), Market Analysis and Assessment, Energy/Petroleum Practice.
  • Whitman, W. B., Coleman, D. C., and Wiebe, W. J. (1998), “Prokaryotes: The Unseen Majority,” Proceedings of the National Academy of Sciences USA, 95, pp 6578–6583. doi:10.1073/pnas.95.12.6578
  • Nisbet, E. G. and Sleep, N. H. (2001), “The Habitat and Nature of Early Life,” Nature, 409, pp 1083–1091. doi:10.1038/35059210
  • Dick, G. J., Anantharaman, K., Baker, B. J., Li, M., Reed, D. C., and Sheik, C. S. (2013), “The Microbiology of Deep-Sea Hydrothermal Vent Plumes: Ecological and Biogeographic Linkages to Seafloor and Water Column Habitats,” Frontiers in Microbiology, 4, Article 124, pp 1–16.  doi:10.3389/fmicb.2013.00124
  • Christner, B. C., Mosley-Thompson, E., Thompson, L. G., Zagorodnov, V., Sandman, K., and Reeve, J. C. (2000), “Recovery and Identification of Viable Bacteria Immured in Glacial Ice,” Icarus, 144(2), pp 479–485. doi:10.1006/icar.1999.6288
  • Lok, C. (2015), “Mining the Microbial Dark Matter,” Nature, 522, pp 270–273. doi:10.1038/522270a
  • Woese, C. R., Kandler, O., and Wheelis, M. L. (1990), “Towards a Natural System of Organisms: Proposal for the Domains Archaea, Bacteria and Eucarya,” Proceedings of the National Academy of Sciences USA, 87, pp 4576–4579. doi:10.1073/pnas.87.12.4576
  • Sapp, J. and Fox, G. E. (2013), “The Singular Quest for a Universal Tree of Life,” Microbiology and Molecular Biology Reviews, 77, pp 541–550. doi:10.1128/MMBR.00038-13
  • Mietzsch, M. and Agbandje-McKenna, M. (2017), “The Good That Viruses Do,” Annual Review of Virology, 4, pp iii–v. doi:10.1146/annurev-vi-04-071217-100011
  • Watson, T. (2019), “The Trickster Microbes Shaking Up the Tree of Life,” Nature, 569, pp 322–324. doi:10.1038/d41586-019-01496-w
  • Raymann, K., Brochier-Armanet, C., and Gribaldo, S. (2015), “The Two-Domain Tree of Life Is Linked to a New Root for the Archaea,” Proceedings of the National Academy of Sciences USA, 112(21), pp 6670–6675. doi:10.1073/pnas.1420858112
  • Drews, G. (2000), “The Roots of Microbiology and the Influence of Ferdinand Cohn on Microbiology of the 19th Century,” FEMS Microbiology Reviews, 24, pp 225–249. doi:10.1111/j.1574-6976.2000.tb00540.x
  • Money, N. P. (2014), Microbiology—A Very Short Introduction, Oxford University Press: Oxford, UK.
  • Parks, D. H., Chuvochina, M., Waite, D. W., Rinke, C., Skarshewski, A., Chaumeil, P. A., and Hugenholtz, P. (2018), “A Standardized Bacterial Taxonomy Based on Genome Phylogeny Substantially Revises the Tree of Life,” Nature Biotechnology, 36(10), pp 996–1004. doi:10.1038/nbt.4229
  • Ju, F. and Zhang, T. (2015), “Experimental Design and Bioinformatics Analysis for the Application of Metagenomics in Environmental Sciences and Biotechnology,” Environmental Science & Technology, 49(21), pp 12628–12640. doi:10.1021/acs.est.5b03719
  • van Zuylen, J. (1981), “The Microscopes of Antoni van Leeuwenhoek,” Journal of Microscopy, 121, pp 309–328. doi:10.1111/j.1365-2818.1981.tb01227.x
  • Young, K. D. (2006), “The Selective Value of Bacterial Shape,” Microbiology and Molecular Biology Reviews, 70(3), pp 660–703. doi:10.1128/MMBR.00001-06
  • Schulz, H. N. and Jørgensen, B. B. (2001), “Big Bacteria,” Annual Review of Microbiology, 55, pp 105–137. doi:10.1146/annurev.micro.55.1.105
  • Gram, H. C. (1884), “Über die isolierte Färbung Der Schizomyceten in Schnitt- und Trockenpräparaten,” Fortschritte der Medizin, 6,pp 185–189.
  • Yarza, P., Yilmaz, P., Pruesse, E., Glöckner, F. O., Ludwig, W., Schleifer, K.-H., Whitman, W. B., Euzéby, J., Amann, R., and Rosselló-Móra, R. (2014), “Uniting the Classification of Cultured and Uncultured Bacteria and Archaea Using 16S RRNA Gene Sequences,” Nature Review Microbiology, 12, pp 635–645. doi:10.1038/nrmicro3330
  • Gahlmann, A., Moerne, W. E. (2014), “Exploring Bacterial Cell Biology with Single-Molecule Tracking and Super-Resolution Imaging,” Nature Reviews Microbiology, 12(1), pp 9–22. doi:10.1038/nrmicro3154.
  • Kerfeld, C. A., Aussignargues, C., Zarzycki, J., Cai, F., and Sutter, M. (2018), “Bacterial Microcompartments,” Nature Review Microbiology, 16, pp 277–290. doi:10.1038/nrmicro.2018.10
  • Wagstaff, J. and Löwe, J. (2018), “Prokaryotic Cytoskeletons: Protein Filaments Organizing Small Cells,” Nature Review Microbiology, 16, pp 187–201. doi:10.1038/nrmicro.2017.153
  • Rampelotto, P. H. (2013), “Extremophiles and Extreme Environments,” Life, 3, pp 482–485. doi:10.3390/life3030482
  • Mora, M., Mahnert, A., Koskinen, K., Pausan, M. R., Oberauner-Wappis, L., Krause, R., Perras, A. K., Gorkiewicz, G., Berg, G., and Moissl-Eichinger, C. (2016), “Microorganism in Confinced Habitats: Microbial Monitoring and Control of Intensive Care Units, Operating Rooms, Cleanrooms and the International Space Station.,” Frontiers in Microbiology, 7, Article 1573, pp 1–20.  doi:10.3389/fmicb.2016.01573
  • Burrows, S. M., Elbert, W., Lawrence, M. G., and Pöschl, U. (2009), “Bacteria in the Global Atmosphere—Part 1: Review and Synthesis of Literature Data for Different Ecosystems,” Atmospheric Chemistry and Physics, 9, pp 9263–9280. doi:10.5194/acp-9-9263-2009
  • Giovanella, P., Vieira, G. A. L., Ramos Otero, I. V., Pais Pellizzer, E., de Jesus Fontes, B., and Sette, L. D. (2019), “Metal and Organic Pollutants Bioremediation by Extremophile Microorganisms,” Journal of Hazardous Materials, 382, pp 121024. doi:10.1016/j.jhazmat.2019.121024
  • Passman, F. J. (2018), “Microbiology of Metalworking Fluids,” Metalworking Fluids, 3rd Ed., Byers, J. P. (Ed.), pp 241–284, CRC Press: Boca Raton, FL.
  • Trafny, E. L. (2013), “Microorganisms in Metalworking Fluids: Current Issues in Research and Management,” International Journal of Occupational Medicine & Environmental Health, 26, pp 4–15.
  • Kapoor, R., Selvaraju, S. B., and Yadav, J. S. (2014), “Extended Tracking of the Microbial Community Structure and Dynamics in an Industrial Synthetic Metalworking Fluid System,” FEMS Microbiology Ecology, 87, pp 664–677. doi:10.1111/1574-6941.12254
  • Di Maiuta, N., Rüfenacht, A., and Küenzi, P. (2017), “Assessment of Bacteria and Archaea in Metalworking Fluids Using Massive Parallel 16S rRNA Gene Tag Sequencing,” Letters in Applied Microbiology, 65, pp 266–273. doi:10.1111/lam.12782
  • Flemming, H. C., Wingender, J., Szewyk, U., Steinberg, P., Scott, A. R., and Kjelleberg, S. (2016), “Biofilms: An Emergent Form of Bacterial Life,” Nature Review Microbiology, 14, pp 563–575. doi:10.1038/nrmicro.2016.94
  • Flemming, H.-C. and Wuertz, S. (2019), “Bacteria and Archaea on Earth and Their Abundance in Biofilms,” Nature Review Microbiology, 17, pp 247–260. doi:10.1038/s41579-019-0158-9
  • Woese, C. R. and Fox, G. E. (1977), “The Phylogenetic Structure of the Prokaryotic Domain: The Primary Kingdoms,” Proceedings of the National Academy of Sciences USA, 74, pp 5088–5090. doi:10.1073/pnas.74.11.5088
  • Albers, S. V., Forterre, P., Prangishvili, D., and Schleper, C. (2014), “The Legacy of Carl Woes and Wolfram Zillig: From Phylogeny to Landmark Discoveries,” Nature Review Microbiology, 11, pp 713–719. doi:10.1038/nrmicro3124
  • Garret, R. A. (2014), “A Backward View from 16S RRNA to Archaea to the Universal Tree of Life Progenotes,” RNA Biology, 11, pp 232–235.
  • Lombard, J., López-Garcia, P., and Moreira, D. (2012), “The Early Evolution of Lipid Membranes and the Three Domains of Life,” Nature Review Microbiology, 10, pp 507–515. doi:10.1038/nrmicro2815
  • DeLong, E. F. and Pace, N. R. (2001), “Environmental Diversity of Bacteria Archaea,” Systematic Biology, 50, pp 470–478. doi:10.1080/106351501750435040
  • Adam, P. S., Borrel, G., Brochier-Armanet, C., and Gribaldo, S. (2017), “The Growing Tree of Archaea: New Perspectives on Their Diversity, Evolution and Ecology,” The ISME Journal, 11, pp 2407–2425. doi:10.1038/ismej.2017.122
  • Eme, L., Spang, A., Lombard, J., Stairs, C. W., and Ettema, T. J. (2017), “Archaea and the Origin of Eukaryotes,” Nature Review Microbiology, 15, pp 711–723. doi:10.1038/nrmicro.2017.133
  • Nevalainen, A., Täubel, M., and Hyvärinen, A. (2015), “Indoor Fungi: Companions and Contaminants,” Indoor Air, 25(2), pp 125–156. doi:10.1111/ina.12182
  • Hachet, O., Bendezú, F. O., and Martin, S. G. (2012), “Fission Yeast: In Shape to Divide,” Current Opinion in Cell Biology, 24, pp 585–564. doi:10.1016/j.ceb.2012.10.001
  • Taddei, A., Schober, H., and Gasser, S. M. (2010), “The Budding Yeast Nucleus,” Cold Spring Harbour Perspectives in Biology, 2, pp a00612–a00631.
  • Bonner, J. T. and Lamont, D. S. (2005), “Behavior of Cellular Slime Molds in the Soil,” Mycologia, 97, pp 178–184.  doi:10.3852/mycologia.97.1.178
  • Harris, S. D. (2008), “Branching of Fungal Hyphae: Regulation, Mechanisms and Comparison with Other Branching Systems,” Mycologia, 100, pp 823–832. doi:10.3852/08-177
  • Dantigny, P. and Nanguy, S. P. (2009), “Significance of the Physiological State of Fungal Spores,” International Journal of Food Microbiology, 134, pp 16–20. doi:10.1016/j.ijfoodmicro.2009.02.005
  • Murat, J.-B., Grenouillet, F., Reboux, G., Penven, E., Batchili, A., Dalphin, J.-C., Thaon, I., and Millon, L. (2011), “Factors Influencing the Microbial Composition of Metalworking Fluids and Potential Implications for Machine Operator’s Lung,” Applied and Environmental Microbiology, 78, pp 34–41. doi:10.1128/AEM.06230-11
  • Sánchez-Martínez, C. and Pérez-Martín, J. (2001), “Dimorphism in Fungal Pathogens: Candida albicans and Ustilago maydis—Similar Inputs, Different Outputs,” Current Opinion in Microbiology, 4(2), pp 214–221.
  • Boyce, K. J. and Andrianopoulos, A. (2015), “Fungal Dimorphism: The Switch from Hyphae to Yeast Is a Specialized Morphogenetic Adaptation Allowing Colonization of a Host,” FEMS Microbiology Reviews, 39(6), pp 797–811. doi:10.1093/femsre/fuv035
  • Crawford, D. H. (2011), Viruses—A Very Short Introduction, Oxford University Press: Oxford, UK.
  • Koonin, E. V. and Dolja, V. V. (2014), “Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements,” Microbiology and Molecular Biology Reviews, 78, pp 278–303. doi:10.1128/MMBR.00049-13
  • Samson, J. E., Magadán, A. H., Sahri, M., and Moineau, S. (2013), “Revenge of the Phages: Defeating Bacterial Defences,” Nature Review Microbiology, 11, pp 675–687. doi:10.1038/nrmicro3096
  • Cho, W. K., Lee, K. M., Yu, J., Son, M., and Kim, K. H. (2013), “Insight into Mycoviruses Infecting Fusarium Species,” Advances in Virus Research, 86, pp 273–288.
  • Abedon, S. T. and Murray, K. L. (2013), “Archaeal Viruses, Not Archaeal Phages: An Archaeological Dig,” Archaea, 2013, pp 251245. doi:10.1155/2013/251245
  • Gutiérrez, D., Rodríguez-Rubio, L., Martínez, B., Rodríguez, A., and García, P. (2016), “Bacteriophages as Weapons against Bacterial Biofilms in the Food Industry,” Frontiers in Microbiology, 7, Article 825, pp 1–15.  doi:10.3389/fmicb.2016.00825
  • Li, P., Bhattacharjee, P., Wang, S., Zhang, L., Ahmed, I., and Guo, L. (2019), “Mycoviruses in Fusarium Species: An Update,” Frontiers in Cellular and Infection Microbiology, 9, Article 257, pp 1–15.  doi:10.3389/fcimb.2019.00257
  • Argov, T., Azulay, G., Pasechnek, A., Stadnuk, O., Ran-Sapir, S., Borovok, I., Sigal, N., and Herskovits, A. A. (2017), “Temperate Bacteriophages as Regulators of Host Behaviour,” Current Opinion in Microbiology, 38, pp 1–7. doi:10.1016/j.mib.2017.05.002
  • Claessen, D., Rozen, D. E., Kuipers, O. P., Søgaard-Andersen, L., and van Wezel, G. P. (2014), “Bacterial Solutions to Multicellularity: A Tale of Biofilms, Filaments and Fruiting Bodies,” Nature Review Microbiology, 12, pp 115–124. doi:10.1038/nrmicro3178
  • Dobretsov, S., Abed, R. M., and Teplitski, M. (2013), “Mini-Review: Inhibition of Biofouling by Marine Microorganisms,” Biofouling, 29, pp 423–441. doi:10.1080/08927014.2013.776042
  • Monroe, D. (2007), “Looking for Chinks in the Armor of Bacterial Biofilm,” PLOS Biology, 5, pp e307. doi:10.1371/journal.pbio.0050307
  • Kanematsu, H. and Barry, D. M. (2015), Biofilm and Materials Science, Springer International Publishing Switzerland: Cham.
  • Flemming, H.-C. and Wingender, J. (2010), “The Biofilm Matrix,” Nature Reviews, 8, pp 623–633. doi:10.1038/nrmicro2415
  • Hawver, L. A., Jung, S. A., and Ng, W.-L. (2016), “Specificity and Complexity in Bacterial Quorum-Sensing Systems,” FEMS Microbiology Reviews, 40, pp 738–752. doi:10.1093/femsre/fuw014
  • Whiteley, M., Diggle, S. P., and Greenberg, E. P. (2017), “Progress in and Promise of Bacterial Quorum Sensing Research,” Nature, 551, pp 313–320. doi:10.1038/nature24624
  • Mukherjee, S. and Bassler, B. L. (2019), “Bacterial Quorum Sensing in Complex and Dynamically Changing Environments,” Nature Review Microbiology, 17(6), pp 371–382. doi:10.1038/s41579-019-0186-5
  • Frank, S. A. (2014), “Microbial Metabolism: Optimal Control of Uptake versus Synthesis,” PeerJ, 2, pp e267. doi:10.7717/peerj.267
  • Mah, T. (2012), “Biofilm-Specific Antibiotic Resistance,” Future Microbiology, 7(9), pp 1061–1072. doi:10.2217/fmb.12.76
  • Sharma, D., Misba, L., and Khan, A. U. (2019), “Antibiotics versus Biofilm: An Emerging Battleground in Microbial Communities,” Antimicrobial Resistance & Infection Control, 8, Article 76, pp 1–10.  doi:10.1186/s13756-019-0533-3
  • Stewart, P. S. (2002), “Mechanisms of Antibiotic Resistance in Bacterial Biofilms,” International Journal of Medical Microbiology, 292(2), pp 107–113. doi:10.1078/1438-4221-00196
  • Bridier, A., Briandet, T., Thomas, V., and Dubois-Brissonnet, F. (2011), “Resistance of Bacterial Biofilms to Disinfectants: A Review,” Biofouling, 27(9), pp 1017–1032. doi:10.1080/08927014.2011.626899
  • Gilbert, P., Allison, D. G., and McBain, A. J. (2002), “Biofilms In Vitro and In Vivo: Do Singular Mechanisms Imply Cross-Resistance?,” Journal of Applied Microbiology, 92, pp 98S–110S. doi:10.1046/j.1365-2672.92.5s1.5.x
  • van Acker, H., van Dijck, P., and Coenye, T. (2014), “Molecular Mechanisms of Antimicrobial Tolerance and Resistance in Bacterial and Fungal Biofilms,” Trends in Microbiology, 22, pp 326–333. doi:10.1016/j.tim.2014.02.001
  • Lewis, K. (2010), “Persister Cells,” Annual Review of Microbiology, 64, pp 357–372. doi:10.1146/annurev.micro.112408.134306
  • Wood, T. K., Knabel, S. J., and Kwan, B. W. (2013), “Bacterial Persister Cell Formation and Dormancy,” Applied and Environmental Microbiology, 79, pp 7116–7121. doi:10.1128/AEM.02636-13
  • Fisher, R. A., Gollan, B., and Helaine, S. (2017), “Persistent Bacterial Infections and Persister Cells,” Nature Review Microbiology, 15, pp 453–464. doi:10.1038/nrmicro.2017.42
  • Nonogaki, H. (2014), “Seed Dormancy and Germination—Emerging Mechanisms and New Hypotheses,” Frontiers in Plant Science, 5, Article 233, pp 1–14.  doi:10.3389/fpls.2014.00233
  • Geiser, F. (2013), “Hibernation,” Current Biology, 23, pp R155–R193. doi:10.1016/j.cub.2013.01.062
  • Mohapatra, B. R. and La Duc, M. T. (2013), “Detecting the Dormant: A Review of Recent Advances in Molecular Techniques for Assessing the Viability of Bacterial Endospores,” Applied Microbiology and Biotechnology, 97, pp 7963–7975. doi:10.1007/s00253-013-5115-3
  • Epstein, S. S. (2009), “Microbial Awakenings,” Nature, 457, pp 1083.
  • Li, L., Mendis, N., Trigui, H., Oliver, J. D., and Faucher, S. P. (2014), “The Importance of the Viable but Non-Culturable State in Human Bacterial Pathogens,” Frontiers in Microbiology, 5, Article 258, pp 1–20.  doi:10.3389/fmicb.2014.00258
  • Salma, M., Rousseaux, S., Sequeira-Le Grand, A., Divol, B., and Alexandre, H. (2013), “Characterization of the Viable but Nonculturable (VBNC) State in Saccharomyces cerevisiae,” PLoS ONE, 8(10), Article e77600, pp 1–11.  doi:10.1371/journal.pone.0077600
  • Abreu, N. A. and Taga, M. E. (2016), “Decoding Molecular Interactions in Microbial Communities,” FEMS Microbiological Reviews, 40(5), pp 643–663.
  • Finney, J. (2015), Water—A Very Short Introduction, Oxford University Press: Oxford, UK.
  • D1252. (2012), “Standard Test Methods for Chemical Oxygen Demand (Dichromate Oxygen Demand) of Water,” ASTM International: West Conshohocken, PA.
  • Vigilak, O., Grizzetti, B., Udias-Moinelo, A., Zanni, M., Dorati, C., Bouraoui, F., and Pistocchi, A. (2019), “Predicting Biochemical Oxygen Demand in European Freshwater Bodies,” Science of the Total Environment, 666, pp 1089–1105. doi:10.1016/j.scitotenv.2019.02.252
  • Hammes, F. and Egli, T. (2010), “Cytometric Methods for Measuring Bacteria in Water: Advantages, Pitfalls and Applications,” Analytical and Bioanalytical Chemistry, 397, pp 1083–1095. doi:10.1007/s00216-010-3646-3
  • Chowdhury, S. (2012), “Heterotrophic Bacteria in Drinking Water Distribution System: A Review,” Environmental Monitoring and Assessment, 184, pp 6087–6137. doi:10.1007/s10661-011-2407-x
  • Kelley, S. T. and Gilbert, J. A. (2013), “Studying the Microbiology of the Indoor Environment,” Genome Biology, 14, Article 202, pp 1–9.  doi:10.1186/gb-2013-14-2-202
  • Smith, D. J., Jaffe, D. A., Birmele, M. N., Griffin, D. W., Schuerger, A. C., Hee, J., and Roberts, M. S. (2012), “Free Tropospheric Transport of Microorganisms from Asia to North America,” Microbial Ecology, 64, pp 973–985. doi:10.1007/s00248-012-0088-9
  • Smith, D. J., Timonen, H. J., Jaffe, D. A., Birmele, M. N., Perry, K. D., Ward, P. D., and Roberts, M. S. (2013), “Intercontinental Dispersal of Bacteria and Archaea by Transpacific Winds,” Applied and Environmental Microbiology, 79, pp 1134–1139. doi:10.1128/AEM.03029-12
  • Mims, S. A. and Mims, F. M., III. (2004), “Fungal Spores Are Transported Long Distances in Smoke from Biomass Fire,” Atmospheric Environment, 38, pp 651–655. doi:10.1016/j.atmosenv.2003.10.043
  • Barberán, A., Ladau, J., Leff, J. W., Pollard, K. S., Menninger, H. L., Dunn, R. R., and Fierer, N. (2015), “Continental-Scale Distributions of Dust-Associated Bacteria and Fungi,” Proceedings of the National Academy of Sciences USA, 112, pp 5756–5761. doi:10.1073/pnas.1420815112
  • Adams, R. I., Miletto, M., Taylor, J. W., and Bruns, T. D. (2013), “Dispersal in Microbes: Fungi in Indoor Air Are Dominated by Outdoor Air and Show Dispersal Limitation at Short Distances,” The ISME Journal, 7, pp 1262–1273. doi:10.1038/ismej.2013.28
  • Pikäranta, M., Meklin, T., Hyvärinen, A., Paulin, L., Auvinen, P., Nevalainen, A., and Rintala, H. (2008), “Analysis of Fungal Flora in Indoor Dust by Ribosomal DNA Sequence Analysis, Quantitative PCR, and Culture,” Applied and Environmental Microbiology, 74(1), pp 233–244. doi:10.1128/AEM.00692-07
  • Rauch, M. E., Graef, H. W., Rozenzhak, S. M., Jones, S. E., Bleckmann, C. A., Kruger, R. L., Naik, R. R., and Stone, M. O. (2006), “Characterization of Microbial Contamination in United States Air Force Aviation Fuel Tanks,” Journal of Industrial Microbiology and Biotechnology, 33, pp 29–36. doi:10.1007/s10295-005-0023-x
  • Adams, R. I., Bhangar, S., Pasut, W., Arens, E. A., Taylor, J. W., Lindow, S. E., Nazaroff, W. W., and Bruns, T. D. (2015), “Chamber Bioaerosol Study: Outdoor Air and Human Occupants as Sources of Indoor Airborne Microbes,” PLoS ONE, 10, Article e0133221, pp 1–18.  doi:10.1371/journal.pone.0133221
  • Qian, J., Hospodsky, D., Yamamoto, N., Nazaroff, W. W., and Peccia, J. (2012), “Size-Resolved Emission Rates of Airborne Bacteria and Fungi in an Occupied Classroom,” Indoor Air, 22, pp 339–351. doi:10.1111/j.1600-0668.2012.00769.x
  • Prussin, A. J., II, and Marr, L. C. (2015), “Sources of Airborne Microorganisms in the Build Environment,” Microbiome, 3, Article 78, pp 1–10. doi:10.1186/s40168-015-0144-z
  • Gadd, G. M. (2010), “Metals, Minerals and Microbes: Geomicrobiology and Bioremediation,” Microbiology, 156, pp 609–643.
  • Cogen, A. L., Nizet, V., and Gallo, R. L. (2008), “Skin Microbiota: A Source of Disease or Defense?,” British Journal of Dermatology, 158, pp 442–455. doi:10.1111/j.1365-2133.2008.08437.x
  • Kong, H. H. and Segre, J. A. (2012), “Skin Microbiome: Looking Back to Move Forward,” Journal of Investigative Dermatology, 132, pp 933–939. doi:10.1038/jid.2011.417
  • Grice, E. A., Kong, H. H., Conlan, S., Davis, J., Young, A. C., NISC Comparative Sequencing Program, Bouffard, G. G., Blakesley, R. W., Murray, P. R., Green, E. D., Turner, M. L., and Segre, J. A. (2009), “Topographical and Temporal Diversity of the Human Skin Microbiome,” Science, 324, pp 1190–1192. doi:10.1126/science.1171700
  • Grice, E. A. and Segre, J. A. (2011), “The Skin Microbiome,” Nature Review Microbiology, 9, pp 244–253. doi:10.1038/nrmicro2537
  • Dréno, B., Araviiskaia, E., Berardesca, E., Gontijo, G., Sanchez-Viera, M., Yiang, L. F., Martin, R., and Bieber, T. (2016), “Microbiome in Healthy Skin, Update for Dermatologists,” Journal of the European Academy of Dermatology and Venereology, 30, pp 2038–2047. doi:10.1111/jdv.13965
  • Byrd, A. L., Belkaid, Y., and Segre, J. A. (2018), “The Human Skin Microbiome,” Nature Review Microbiology, 16, pp 143–155. doi:10.1038/nrmicro.2017.157
  • Takeshita, T., Kageyama, S., Furuta, M., Tsuboi, H., Takeuchi, K., Shibata, Y., Shimazaki, Y., Akifusa, S., Ninomiya, T., Kiyohara, Y., and Yamashita, Y. (2016), “Bacterial Diversity in Saliva and Oral Health–Related Conditions: The Hisayama Study,” Scientific Reports, 6, Article 22164, pp 1–11.  doi:10.1038/srep22164
  • Proctor, D. M., Fukuyama, J. M., Loomer, P. M., Armitage, G. C., Lee, S. A., Davis, N. M., Ryder, M. I., Holmes, S. P., and Relman, D. A. (2018), “A Spatial Gradient of Bacterial Diversity in the Human Oral Cavity Shaped by Salivary Flow,” Nature Communications, 9, Article 681, pp 1–10.  doi:10.1038/s41467-018-02900-1
  • Chubukov, V., Gerosa, L., Kochanowski, K., and Sauer, U. (2014), “Coordination of Microbial Metabolism,” Nature Review Microbiology, 12, pp 327–340. doi:10.1038/nrmicro3238
  • Braakman, R. and Smith, E. (2013), “The Compositional and Evolutionary Logic of Metabolism,” Physiological Biology, 10, Article 011001, pp 1–66.  doi:10.1088/1478-3975/10/1/011001
  • Dusane, D. H., Zinjarde, S. S., Venugoplan, V. P., McLean, R. J., Weber, M. M., and Rahman, P. K. (2010), “Quorum Sensing: Implications on Rhamnolipid Biosurfactant Production,” Biotechnology and Genetic Engineering Reviews, 27, pp 159–184. doi:10.1080/02648725.2010.10648149
  • Pirog, T. G., Shevchuck, T. A., Konon, A. D., and Dolotenko, E. Y. (2012), “Production of Sufactants by Acinetobacter cacoaceticus K–4 Grown on Ethanol with Organic Acids,” Applied Biochemistry and Microbiology, 48, pp 631–639. doi:10.1134/S0003683812040102
  • Muszynski, A. and Lebowska, M. (2005), “Biodegradation of Used Metalworking Fluids in Wastewater Treatment,” Polish Journal of Environmental Studies, 14, pp 73–79.
  • van der Gast, C. J., Whiteley, A. S., and Thompson, I. P. (2004), “Temporal Dynamics and Degradation Activity of an Bacterial Inoculum for Treating Waste Metal-Working Fluid,” Environmental Microbiology, 6, pp 254–263. doi:10.1111/j.1462-2920.2004.00566.x
  • Piccardi, P., Vessman, B., and Mitri, S. (2019), “Toxicity Drives Facilitation between 4 Bacterial Species,” Proceedings of the National Academy of Sciences USA, 116(32), pp 15979–15984. doi:10.1073/pnas.1906172116
  • Beyenal, H. and Babauta, J. T. (2012), “Microscale Gradients and Their Role in Electron-Transfer Mechanisms in Biofilms,” Biochemical Society Transactions, 40(6), pp 1315–1318. doi:10.1042/BST20120105
  • Wolfe, A. J. (2015), “Glycolysis for the Microbiome Generation,” Microbiology Spectrum, 3(3), pp 1–16.
  • Videla, H. A. and Herrera, L. K. (2005), “Microbiologically Influenced Corrosion: Looking to the Future,” International Microbiology, 8, pp 169–180.
  • Muthukumar, N., Maruthamuthu, S., Mohanan, S., and Palaniswamy, N. (2006), “Oil Soluble Corrosion Inhibitor on Microbiologically Influenced Corrosion in Diesel Transporting Pipeline,” Portugaliae Electrochimica Acta, 25(3), pp 319–334.
  • Rajasekar, A., Maruthamuthu, S., Palaniswamy, N., and Rejendran, A. (2007), “Biodegradation of Corrosion Inhibitors and Their Influence on Petroleum Product Pipeline,” Microbiology Research, 162, pp 355–368. doi:10.1016/j.micres.2006.02.002
  • Little, B., Lee, J., and Ray, R. (2007), “A Review of ‘Green’ Strategies to Prevent or Mitigate Microbiologically Influence Corrosion,” Biofouling, 23, pp 87–97. doi:10.1080/08927010601151782
  • Nijland, R. and Burgess, J. G. (2010), “Bacterial Olfaction,” Biotechnology, 5, pp 974–977. doi:10.1002/biot.201000174
  • Weisskopf, L., Ryu, C.-M., Raaijmakers, J. M., and Garbeva, P. (2016), “Editorial: Smelly Fumes: Volatile-Mediated Communication between Bacteria and Other Organisms,” Frontiers in Microbiology, 7, Article 2031, pp 1–3.
  • Hentges, D. J. (1996), “Anaerobes: General Characteristics,” Medical Microbiology, 4th Ed., Baron, S. (Ed.), University of Texas Medical Branch: Galveston, TX. https://www.ncbi.nlm.nih.gov/books/NBK7638/
  • Jurtshuk, P., Jr. (1996), “Bacterial Metabolism,” Medical Microbiology, 4th Ed., Baron, S. (Ed.), University of Texas Medical Branch: Galveston, TX. https://www.ncbi.nlm.nih.gov/books/NBK7919/
  • Weise, T., Kai, M., and Piechulla, B. (2013), “Bacterial Ammonia Causes Significant Plant Growth Inhibition,” PLoS ONE, 8(5), pp e63538. doi:10.1371/journal.pone.0063538
  • Johnson, D. B. and Sánchez-Andrea, I. (2019), “Dissimilatory Reduction of Sulfate and Zero-Valent Sulfur at Low pH and Its Significance for Bioremediation and Metal Recovery,” Advances in Microbial Physiology, 75, pp 205–231.
  • Lewis, R. J. and Copley, G. B. (2015), “Chronic Low-Level Hydrogen Sulfide Exposure and Potential Effects on Human Health: A Review of the Epidemiological Evidence,” Critical Reviews in Toxicology, 45(2), pp 93–123. doi:10.3109/10408444.2014.971943
  • Singh, S. B. and Lin, H. C. (2015), “Hydrogen Sulfide in Physiology and Diseases of the Digestive Tract,” Microorganisms, 3(4), pp 866–889. doi:10.3390/microorganisms3040866
  • Özogul, F. and Özogul, Y. (2007), “The Ability of Biogenic Amines and Ammonia Production by Single Bacterial Cultures,” European Food Research and Technology, 225(3–4), pp 385–394. doi:10.1007/s00217-006-0429-3
  • Smeets, M. A. M., Bulsing, P. J., van Rooden, S., Steinmann, R., de Ru, J. A., Ogink, N. W. M., van Thriel, C., and Dalton, P. H. (2007), “Odor and Irritation Thresholds for Ammonia: A Comparison between Static and Dynamic Olfactometry,” Chemical Senses, 32(1), pp 11–20. doi:10.1093/chemse/bjl031
  • Padappayil, R. P. and Borger, J. (2019), Ammonia Toxicity, StatPearls Publishing: Treasure Island, FL.
  • Schleibinger, H., Laussmann, D., Bornehag, C. G., and Rueden, H. (2008), “Microbial Volatile Organic Compounds in the Air of Moldy and Mold-Free Indoor Environments,” Indoor Air, 18(2), pp 113–124. doi:10.1111/j.1600-0668.2007.00513.x
  • Egbuta, M. A., Mwanza, M., and Babalola, O. O. (2017), “Health Risks Associated with Exposure to Filamentous Fungi,” International Journal of Environmental Research and Public Health, 14, Article 719, pp 1–17.  doi:10.3390/ijerph14070719
  • Wilson, S. C., Brasel, T. L., Carriker, C. G., Fortenberry, G. D., Fogle, M. R., Martin, J. M., Wu, C., Andriychuk, L. A., Karunasena, E., and Straus, D. C. (2004), “An Investigation into Techniques for Cleaning of Mold-Contaminated Home Contents.,” Journal of Occupational and Environmental Hygiene, 1(7), pp 442–447. doi:10.1080/15459620490462823
  • ANSI/ASHRAE 62.1. (2019), “Ventilation for Acceptable Indoor Air Quality,” ASHRAE: Atlanta.
  • Lambers, H., Piessens, S., Bloem, A., Pronk, H., and Finkel, P. (2006), “Natural Skin Surface pH Is on Average Below 5, Which Is Beneficial for Its Resident Flora,” International Journal of Cosmetic Science, 28, pp 359–370. doi:10.1111/j.1467-2494.2006.00344.x
  • Proksch, E. (2018), “pH in Nature, Humans and Skin,” Journal of Dermatology, 45(9), pp 1044–1052. doi:10.1111/1346-8138.14489
  • Tay, S. S., Roediger, B., Tong, P. L., Tikoo, S., and Weninger, W. (2014), “The Skin-Resident Immune Network,” Current Dermatology Reports, 3, pp 13–22. doi:10.1007/s13671-013-0063-9
  • Health and Safety Executive. (2011), “Working Safely with Metalworking Fluids,” INDG365 08/11.
  • Maier, L. E., Lampel, H. P., Bhutani, T., and Jacob, S. E. (2009), “Hand Dermatitis: A Focus on Allergic Contact Dermatitis to Biocides,” Dermatologic Clinics, 27, pp 251–264. doi:10.1016/j.det.2009.05.007
  • Saito, M., Arakaki, R., Yamada, A., Tsunematsu, T., Kudo, Y., and Ishimaru, N. (2016), “Molecular Mechanisms of Nickel Allergy,” International Journal of Molecular Sciences, 17(2), Article E202, pp 1–8.  doi:10.3390/ijms17020202
  • Schwarz, M., Dado, M., Hnilica, R., and Veverková, D. (2013), “Environmental and Health Aspects of Metalworking Fluid Use,” Polish Journal of Environmental Studies, 1, pp 37–45.
  • Murillo, N. and Raoult, D. (2013), “Skin Microbiota: Overview and Role in the Skin Diseases Acne Vulgaris and Rosacea,” Future Microbiology, 8, pp 209–222. doi:10.2217/fmb.12.141
  • E2693. (2014), “Standard Practice for Prevention of Dermatitis in the Wet Metal Removal Fluid Environment,” ASTM International: West Conshohocken, PA.
  • Das, M. and Misra, M. P. (1988), “Acne and Folliculitis Due to Diesel Oil,” Contact Dermatitis, 18, pp 120–121. doi:10.1111/j.1600-0536.1988.tb02763.x
  • Miller, F. J., Gardner, D. E., Graham, J. A., Lee, R. E., Jr., Wilson, W. E., and Bachmann, J. D. (1979), “Size Considerations for Establishing a Standard for Inhalable Particles,” Journal of the Air Pollution Control Association, 29(6), pp 610–615. doi:10.1080/00022470.1979.10470831
  • Boorsma, C. E., Draijer, C., and Melgert, B. N. (2013), “Macrophage Heterogeneity in Respiratory Diseases,” Mediators of Inflammation, 2013, pp 769214. doi:10.1155/2013/769214
  • Cavaillon, J. M. (2018), “Exotoxins and Endotoxins: Inducers of Inflammatory Cytokines,” Toxicon, 149, pp 45–53.
  • Bogaert, P., Tournoy, K. G., Naessens, T., and Grooten, J. (2009), “Where Asthma and Hypersensitivity Pneumonitis Meet and Differ,” American Journal of Pathology, 174, pp 3–13. doi:10.2353/ajpath.2009.071151
  • Walser, R., Burke, J. E., Gogvadze, E., Bohnacker, T., Zhang, X., Hess, D., Küenzi, P., Leitges, M., Hirsch, E., Williams, R. L., Laffargue, M., and Wymann, M. P. (2013), “PKCβ Phosphorylates PI3Kγ to Activate It and Release It from GPCR Control,” PLOS Biology, 11, pp e1001587. doi:10.1371/journal.pbio.1001587
  • Tsukagoshi, H., Ishioka, T., Noda, M., Kozawa, K., and Kimura, H. (2013), “Molecular Epidemiology of Respiratory Viruses in Virus-Induced Asthma,” Frontiers in Microbiology, 4, Article 278, pp 1–10.  doi:10.3389/fmicb.2013.00278
  • Fung, I., Garret, J. P., Shahane, A., and Kwan, M. (2012), “Do Bugs Control Our Fate? The Influence of the Microbiome on Autoimmunity,” Current Allergy and Asthma Reports, 12, pp 511–519. doi:10.1007/s11882-012-0291-2
  • White, E. M. (2018), “Health and Safety Aspects in the Use of Metalworking Fluids,” Metalworking Fluids, 3rd. Ed., Byers, J. P. (Ed.), pp 411–424, CRC Press: Boca Raton, FL.
  • Cummings, K. J., Stanton, M. L., Nett, R. J., Segal, L. N., Kreiss, K., Abraham, J. L., Colby, T. V., Franko, A. D., Green, F. H. Y., Sanyal, S., Tallaksen, R. J., Wendland, D., Bachelder, V. D., Boylstein, R. J., Park, J.-H., Cox-Ganser, J. M., Virji, M. A., Crawford, J. A., Green, B. J., LeBouf, R. F., Blaser, M. J., and Weissman, D. N. (2019), “Severe Lung Disease Characterized by Lymphocytic Bronchiolitis, Alveolar Ductitis, and Emphysema (BADE) in Industrial Machine-Manufacturing Worker,” American Journal of Industrial Medicine, 62(11), pp 45–53.
  • Fishwick, D. (2012), “New Occupational and Environmental Causes of Asthma and Extrinsic Allergic Alveolitis,” Clinics in Chest Medicine, 33, pp 605–616. doi:10.1016/j.ccm.2012.07.002
  • Kapoor, R. and Yadav, J. S. (2012), “Expanding the Mycobacterial Diversity of Metalworking Fluids (MWFs): Evidence Showing MWF Colonization by Mycobacterium abscessus,” FEMS Microbiology Ecology, 79, pp 392–399. doi:10.1111/j.1574-6941.2011.01227.x
  • Wallace, R. J., Jr., Zhang, Y., Wilson, R. W., Mann, L., and Rossmoore, H. (2002), “Presence of a Single Genotype of a Newly Described Species Mycobacterium immunogenum in Industrial Metalworking Fluids Associated with Hypersensitivity Pneumonitis,” Applied and Environmental Microbiology, 68, pp 5580–5584. doi:10.1128/aem.68.11.5580-5584.2002
  • James, P. L., Cannon, J., Crawford, L., D’Souza, E., Barber, C., Cowman, S., Cookson, W. O., Moffatt, M. F., and Cullinan, P. (2015), “Molecular Detection of Mycobacterium avium in Aerosolised Metal Working Fluids Is Linked to a Localised Outbreak of Extrinsic Allergic Alveolitis in Factory Workers,” American Journal of Respiratory and Critical Care Medicine, 191, Poster a2578. https://www.atsjournals.org/doi/abs/10.1164/ajrccm-conference.2015.191.1_MeetingAbstracts.A2578
  • Rao, K. M. (2001), “MAP Kinase Activation in Macrophages,” Journal of Leukocyte Biology, 69, pp 3–10.
  • Gordon, T., Nadziejko, C., Galdanes, K., Lewis, D., and Donnelly, K. (2006), “Mycobacterium immunogenum Causes Hypersensitivity Pneumonitis–Like Pathology in Mice,” Inhalation Toxicology, 18(6), pp 449–456. doi:10.1080/08958370600563904
  • Thorne, P. S., Adamcakova-Dodd, A., Kelly, K. M., O’Neill, M. E., and Duchaine, C. (2006), “Metalworking Fluid with Mycobacteria and Endotoxin Induces Hypersensitivity Pneumonitis in Mice,” American Journal of Respiratory and Critical Care Medicine, 173, pp 759–768. doi:10.1164/rccm.200405-627OC
  • Khan, K. (2008), “Peering into the Mist,” Lubes’n’Greases, 14, pp 22–27.
  • Passman, F. J. (2008), “Metalworking Fluid Microbes—What We Need to Know to Successfully Understand Cause and Effect Relationships,” Tribology Transactions, 51, pp 110–117. doi:10.1080/10402000701691720
  • Passman, F. J., Rossmoore, K., and Rossmoore, L. (2009), “Relationship between the Presence of Mycobacteria and Non-Mycobacteria in Metalworking Fluids,” Tribology & Lubrication Technology, March, pp 2–5.
  • Rosenmann, K. D. (2009), “Asthma, Hypersensitivity Pneumonitis and Other Respiratory Diseases Caused by Metal Working Fluids,” Current Opinion in Allergy and Clinical Immunology, 9, pp 97–102.
  • Passman, F. J. (2018), “The Path Ahead for Metalworking Fluid Microbiology,” Lubes’n’Greases, June, pp 44–48.
  • Torvinen, E., Meklin, T., Torkko, P., Suomalainen, S., Reiman, K., Katila, M. L., Paulin, L., and Nevalainen, A. (2006), “Mycobacteria and Fungi in Moisture-Damaged Building Materials,” Applied and Environmental Microbiology, 72, pp 6822–6824. doi:10.1128/AEM.00588-06
  • Graeney, A. J., Leppla, S. H., and Moayeri, M. (2015), “Bacterial Exotoxins and the Inflammasome,” Frontiers in Immunology, 6, Article 570, pp 1–10.  doi:10.3389/fimmu.2015.00570
  • Wolf, P. and Elsässer-Beile, U. (2009), “Pseudomonas Exotoxin A: From Virulence Factor to Anti-Cancer Agent,” International Journal of Microbiology, 299, pp 161–176. doi:10.1016/j.ijmm.2008.08.003
  • von Köckritz-Blickwede, M., Blodkamp, S., and Nizet, V. (2016), “Interaction of Bacterial Exotoxins with Neutrophil Extracellular Traps: Impact for the Infected Host,” Frontiers in Microbiology, 7, pp 402. doi:10.3389/fmicb.2016.00402
  • Liew, W.-P.-P. and Mohd-Redzwan, S. (2018), “Mycotoxin: Its Impact on Gut Health and Microbiota,” Frontiers in Cellular and Infection Microbiology, 8, Article 60, pp 1–17.  doi:10.3389/fcimb.2018.00060
  • Brandenburg, K., Schromm, A. B., and Gutsmann, T. (2010), “Endotoxins: Relationship between Structure, Function, and Activity,” Subcellular Biochemistry, 53, pp 53–67.
  • Munford, R. S. (2016), “Endotoxemia—Menace, Marker, or Mistake?,” Journal of Leukocyte Biology, 100, pp 687–698. doi:10.1189/jlb.3RU0316-151R
  • Myhre, A. E., Aasen, A. O., Thiemermann, C., and Wang, J. E. (2006), “Peptidoglycan—An Endotoxin in Its Own Right?,” Shock, 25, pp 227–235.
  • Mahabeleshwar, G. H., Qureshi, M. A., Takami, Y., Sharma, N., Lingrel, J. B., and Jain, M. K. (2009), “A Myeloid Hypoxia-Inducible Factor 1α-Krüppel-Like Factor 2 Pathway Regulates Gram-Positive Endotoxin-Mediated Sepsis,” Journal of Biological Chemistry, 287, pp 251–264. doi:10.1074/jbc.M111.312702
  • Gilbert, Y., Veillette, M., Meriaux, A., Lavoie, J., Cromier, Y., and Duchaine, C. (2010), “Metalworking Fluid–Related Aerosols in Machining Plants,” Journal of Occupational and Environmental Hygiene, 7, pp 280–290. doi:10.1080/15459621003680227
  • Dutch Expert Committee on Occupational Safety. (2010), “Endotoxins: Health-Based Recommended Occupational Exposure Limit,” 2010/04OSH, Health Council of the Netherlands: The Hague, The Netherlands.
  • Brandtzaeg, P., Osnes, L., Østebø, R., Joø, G. B., Westvik, Å.-B., and Kierulf, P. (1996), “Net Inflammatory Capacity of Human Septic Shock Plasma Evaluated by a Monocyte-Based Target Cell Assay: Identification of Interleukin-10 as a Major Functional Deactivator of Human Monocytes,” Journal of Experimental Medicine, 184, pp 51–60. doi:10.1084/jem.184.1.51
  • Crook, B. and Swan, J. R. M. (2001), “Bacteria and Other Bioaerosols in Industrial Workplaces,” Microorganisms in Home and Indoor Work Environments; Diversity Health Impacts, Investigation and Control, Flannigan, B., Samson, R. A., and Miller, J. D. (Eds.), pp 69–82, Harwood Publishers: Churchton, MD.
  • Senior, H., Barber, C., and Evans, G. (2015), “Endotoxin in Metal Working Fluid (MWF) Mist,” Health and Safety Research Reports, RR 1043.
  • Brookes, J. (2017), Biological and Chemical Hazards in Water-Mix Metalworking Fluids and Mists, Doctoral Thesis, Sheffield Hallam University: Sheffield, UK. Available at http://shura.shu.ac.uk/21507/.
  • Burge, P. S. (2016), “Hypersensitivity Pneumonitis Due to Metalworking Fluid Aerosols,” Current Allergy and Asthma Reports, 16, Article 59, pp 1–7 .  doi:10.1007/s11882-016-0639-0
  • D5465. (2016), “Practices for Determining Microbial Colony Counts from Waters Analyzed by Plating Methods,” ASTM International: West Conshohocken, PA.
  • Rezzonico, F., Vogel, G., Duffy, B., and Tonolla, M. (2010), “Application of Whole-Cell Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Rapid Identification and Clustering Analysis of Pantoea Species,” Applied and Environmental Microbiology, 76, pp 4497–4509. doi:10.1128/AEM.03112-09
  • Epstein, S. S. (2013), “The Phenomenon of Microbial Uncultivability,” Current Opinion in Microbiology, 16, pp 636–642. doi:10.1016/j.mib.2013.08.003
  • Kepner, R. J. and Pratt, J. R. (1994), “Use of Fluorochromes for Direct Enumeration of Total Bacteria in Environmental Samples: Past and Present,” Microbiology Reviews, 58, pp 603–615. doi:10.1128/MMBR.58.4.603-615.1994
  • E2694. (2018), “Standard Practice for Enumeration of Mycobacteria in Metalworking Fluids by Direct Microscopic Counting (DMC) Method,” ASTM International: West Conshohocken, PA.
  • Frickmann, H., Zautner, A. E., Moter, A., Kikhney, J., Hagen, R. M., Stender, H., and Poppert, S. (2017), “Fluorescence in situ Hybridization (FISH) in the Microbiological Diagnostic Routine Laboratory: A Review,” Critical Reviews in Microbiology, 43(3), pp 263–293. doi:10.3109/1040841X.2016.1169990
  • Murata, N., Allakhverdiev, S. I., and Nishiyama, Y. (2012), “The Mechanism of Photoinihibition In Vivo: Re-Evaluation of the Roles of Catalase, α-Tocopherol, Non-Photochemical Quenching and Electron Transport,” Biochimica Biophysica Acta, 1817, pp 1127–1133. doi:10.1016/j.bbabio.2012.02.020
  • Gannon, J. and Bennett, E. O. (1981), “A Rapid Method for Determining Microbial Loads in Metalworking Fluids,” Tribology, 14, pp 3–6. doi:10.1016/0301-679X(81)90021-9
  • Bartlett, J. M. and Stirling, D. (2003), “A Short History of the Polymerase Chain Reaction,” Methods in Molecular Biology, Vol. 226: PCR Protocols, 2nd Ed., Bartlett, J.M.S. and Stirling D. (Eds.), pp 3–6. Humana Press Inc.: Totowa, NJ.
  • Rhodes, G., Fluri, A., Rüfenacht, A., Gerber, M., and Pickup, R. (2011), “Implementation of a Quantitative Real-Time PCR Assay for the Detection of Mycobacterium immunogenum in Metalworking Fluids,” Journal of Occupational and Environmental Hygiene, 8, pp 478–483. doi:10.1080/15459624.2011.590737
  • Fittipaldi, M., Nocker, A., and Codony, F. (2012), “Progress in Understanding Preferential Detection of Live Cells Using Viability Dyes in Combination with DNA Amplification,” Journal of Microbiological Methods, 91, pp 276–289. doi:10.1016/j.mimet.2012.08.007
  • Cao, Y., Fanning, S., Proos, S., Jordan, K., and Srikumar, S. (2017), “A Review on the Applications of Next Generation Sequencing Technologies as Applied to Food-Related Microbiome Studies,” Frontiers in Microbiology, 8, Article 1829, pp 1–16.  doi:10.3389/fmicb.2017.01829
  • Salter, S. J., Cox, M. J., Turek, E. M., Calus, S. T., Cookson, W. O., Moffatt, M. F., Turner, P., Parkhill, J., Loman, N. J., and Walker, A. W. (2014), “Reagent and Laboratory Contamination Can Critically Impact Sequence-Based Microbiome Analyses,” BMC Biology, 12, Article 87, pp 1–12.  doi:10.1186/s12915-014-0087-z
  • Eisenhofer, R., Minich, J. J., Marotz, C., Cooper, A., Knight, R., and Weyrich, L. S. (2019), “Contamination in Low Microbial Biomass Microbiome Studies: Issues and Recommendations,” Trends in Microbiology, 27(2), pp 105–117. doi:10.1016/j.tim.2018.11.003
  • Davis, C. (2014), “Enumeration of Probiotic Strains: Review of Culture-Dependent and Alternative Techniques to Quantify Viable Bacteria,” Journal of Microbiological Methods, 103C, pp 9–17. doi:10.1016/j.mimet.2014.04.012
  • Koch, C., Harms, H., and Müller, S. (2014), “Dynamics in the Microbial Cytome-Single Cell Analytics in Natural Systems,” Current Opinion in Biotechnology, 27C, pp 134–141. doi:10.1016/j.copbio.2014.01.011
  • Sohier, D., Pavan, S., Riou, A., Combrisson, J., and Postollec, F. (2014), “Evolution of Microbiological Analytical Methods for Dairy Industry Needs,” Frontiers in Microbiology, 5, Article 16, pp 1–10.  doi:10.3389/fmicb.2014.00016
  • van Nevel, S., Koetsch, S., Proctor, C. R., Besmer, M. D., Prest, E. I., Vrouwenvelder, J. S., Knezev, A., Boon, N., and Hammes, F. (2017), “Flow Cytometric Bacterial Cell Counts Challenge Conventional Heterotrophic Plate Counts for Routine Microbiological Drinking Water Monitoring,” Water Research, 113, pp 191–206.
  • Veiter, L. and Herwig, C. (2019), “The Filamentous Fungus Penicillium chrysogenum Analysed via Flow Cytometry—A Fast and Statistically Sound Insight into Morphology and Viability,” Applied Microbiology and Biotechnology, 103(16), pp 6725–6735. doi:10.1007/s00253-019-09943-4
  • Knowles, J. R. (1980), “Enzyme-Catalyzed Phosphoryl Transfer Reactions,” Annual Review of Biochemistry, 49, pp 877–919. doi:10.1146/annurev.bi.49.070180.004305
  • E2694. (2016), “Standard Test Method for Measurement of Adenosine Triphosphate in Water-Miscible Metalworking Fluids,” ASTM International: West Conshohocken, PA.
  • Passman, F. J., Egger. G. L., II, Hallahan, S., Skinner, B. W., and Deschepper, M. (2010), “Real-Time Testing of Bioburdens in Metalworking Fluids Using Adenosine Triphosphate as a Biomass Indicator,” Tribology & Lubrication Technology, pp 40–45.
  • Passman, F. J. and Küenzi, P. (2015), “A Differential Adenosine Triphosphate Test Method for Differentiating between Bacterial and Fungal Contamination in Water-Miscible Metalworking Fluids,” International Biodeterioration and Biodegradation, 99, pp 129–137. doi:10.1016/j.ibiod.2015.01.006
  • E2657. (2016), “Standard Practice for Determination of Endotoxin Concentrations in Water-Miscible Metalworking Fluids,” ASTM International: West Conshohocken, PA.
  • E2144. (2016), “Standard Practice for Personal Sampling and Analysis of Endotoxin in Metalworking Fluid Aerosols in Workplace Atmospheres,” ASTM International: West Conshohocken, PA.
  • Saha, R. and Donofrio, R. S. (2012), “The Microbiology of Metalworking Fluids,” Applied Microbiology and Biotechnology, 94, pp 1119–1130. doi:10.1007/s00253-012-4055-7
  • Lemire, J. A., Harrison, J. J., and Turner, R. J. (2013), “Antimicrobial Activity of Metals: Mechanisms, Molecular Targets and Applications,” Nature Review Microbiology, 11, pp 371–384. doi:10.1038/nrmicro3028
  • Keogh, D., Lam, L. N., Doyle, L. E., Matysik, A., Pavagadhi, S., Umashankar, S., Low, P. M., Dale, J. L., Song, Y., Ng, S. P., Boothroyd, C. B., Dunny, G. M., Swarup, S., William, R. B. H., Marsili, E., and Kline, K. A. (2018), “Extracellular Electron Transfer Powers Enterococcus faecalis Biofilm Metabolism,” mBio, 10, pp e00626–17. doi:10.1128/mBio.01080-19
  • Vimbela, G. V., Ngo, S. M., Fraze, C., Yang, L., and Stout, D. A. (2016), “Antibacterial Properties and Toxicity from Metallic Nanomaterials,” International Journal of Nanomedicine, 12, pp 3941–3965. doi:10.2147/IJN.S134526
  • Villapún, V. M., Dover, L. G., Cross, A., and González, S. (2016), “Antibacterial Metallic Touch Surfaces,” Materials (Basel), 9, Article E736, pp 1–23. doi:10.3390/ma9090736
  • “Regulation No. 528/2012 of the European Parliament and of the Council of 22 May 2012 Concerning the Making Available on the Market and Use of Biocidal Products,” (2012), Official Journal of the European Union. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02012R0528-20191120
  • “Pesticide Registration and Classification Procedures,” 40 C.F.R. part 152 (2011), https://www.govinfo.gov/app/details/CFR-2011-title40-vol24/CFR-2011-title40-vol24-part152
  • E2169. (2017), “Standard Practice for Selecting Antimicrobial Pesticides for Use in Water-Miscible Metalworking Fluids,” ASTM International: West Conshohocken, PA.
  • Chandler, C. J. and Segel, I. H. (1978), “Mechanism of the Antimicrobial Action of Pyrithione: Effects on Membrane Transport, ATP Levels, and Protein Synthesis,” Antimicrobial Agents and Chemotherapy, 14, pp 60–68. doi:10.1128/aac.14.1.60
  • Maris, P. (1995), “Modes of Actions of Disinfectants,” Revue scientifique et technique, 14, pp 47–55. doi:10.20506/rst.14.1.829
  • Gnanadhas, D. P., Marathe, S. A., and Chakravortty, D. (2013), “Biocides—Resistance, Cross-Resistance Mechanisms and Assessment,” Expert Opinion on Investigational Drugs, 22, pp 191–206. doi:10.1517/13543784.2013.748035
  • Burgos-Barragan, G., Wit, N., Meiser, J., Dingler, F. A., Pietzke, M., Mulderrig, L., Pontel, L. B., Rosado, I. V., Brewer, T. F., Cordell, R. L., Monks, P. S., Chang, C. J., Vazquez, A., and Patel, K. J. (2017), “Mammals Divert Endogenous Genotoxic Formaldehyde into One-Carbon Metabolism,” Nature, 548, pp 549–554. doi:10.1038/nature23481
  • de Groot, A., Geier, J., Flyvholm, M. A., Lensen, G., and Coenraads, P. J. (2010), “Formaldehyde-Releasers: Relationship to Formaldehyde Contact Allergy. Metalworking Fluids and Remainder. Part 1,” Contact Dermatitis, 63, pp 117–128. doi:10.1111/j.1600-0536.2010.01698.x
  • de Groot, A., Geier, J., Flyvholm, M. A., Lensen, G., and Coenraads, P. J. (2010), “Formaldehyde-Releasers: Relationship to Formaldehyde Contact Allergy. Metalworking Fluids and Remainder. Part 2,” Contact Dermatitis, 63, pp 129–139. doi:10.1111/j.1600-0536.2010.01698.x
  • Songur, A., Ozen, O. A., and Sarsilmaz, M. (2010), “The Toxic Effects of Formaldehyde on the Nervous System,” Reviews of Environmental Contamination and Toxicology, 203, pp 105–118.
  • Swenberg, J. A., Moeller, B. C., Lu, K., Rager, J. E., Fry, R. C., and Starr, T. B. (2013), “Formaldehyde Carcinogenicity Research: 30 Years and Counting for Mode of Action, Epidemiology, and Cancer Risk Assessment,” Toxicologic Pathology, 41, pp 181–189. doi:10.1177/0192623312466459
  • IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. (2009), A Review of Human Carcinogens. Part F: Chemical Agents and Related Occupations, International Agency for Research on Cancer: Lyon, France.
  • Starr, T. B. and Swenberg, J. A. (2012), “A Novel Bottom-Up Approach to Bounding Low-Dose Human Cancer Risks from Chemical Exposure,” Regulatory Toxicology and Pharmacology, 65, pp 745–767. doi:10.1016/j.yrtph.2013.01.004
  • Passman, F. J., Canter, N. M., Rotherham, R., Byers, J. P., and Eachus, A. C. (2016), “Science vs. Fiction—MWF Biocides Part II,” Tribology & Lubrication Technology, pp 46–57.
  • Friis, U. F., Menné, T., Flyvholm, M. A., Bonde, J. P., Lepoittevin, J. P., Le Coz, C. J., and Johanson, J. D. (2014), “Isothiazolinones in Commercial Products at Danish Workplaces,” Contact Dermatitis, 71, pp 65–74. doi:10.1111/cod.12235
  • Hu, K., Li, H. R., Ou, R. J., Li, C. Z., and Yang, X. L. (2014), “Tissue Accumulation and Toxicity of Isothiazolinone in Ctenopharyngodon idellus (Grass Carp): Association with P-Glycoprotein Expression and Location within Tissues,” Environmental Toxicology and Pharmacology, 37, pp 529–535. doi:10.1016/j.etap.2013.12.017
  • Forbes, S., Knight, C. G., Cowley, N. L., Amézquitta, A., McClure, P., Humphreys, G., and McBain, A. J. (2016), “Variable Effects of Exposure to Formulated Microbicides on Antibiotic Susceptibility in Firmicutes and Proteobacteria,” Applied and Environmental Microbiology, 82, pp 3591–3598. doi:10.1128/AEM.00701-16
  • Passman, F. J., Küenzi, P., Schmidt, J. (2020), “Adenylate Energy Charge-New Tool for Determining Metalworking Fluid Microbial Population's Sublethal Response to Microbicide Treatment,” American Journal of Biomedical Science & Research, 7(4), pp 367–371. doi: 10.34297/AJBSR.2020.07.001178
  • Sandossi, M., Rossmoore, H. W., and Williams, R. (1989), “Relative Formaldehyde Resistance among Bacterial Survivors of Biocide-Treated Metalworking Fluid,” International Biodeterioration, 25, pp 423–437. doi:10.1016/0265-3036(89)90068-7
  • Gullberg, E., Cao, S., Berg, O. G., Illbäck, C., Sandegren, L., Hughes, D., and Andersson, D. I. (2011), “Selection of Resistant Bacteria at Very Low Antibiotic Concentrations,” PLOS Pathogens, 7, pp e1002158. doi:10.1371/journal.ppat.1002158
  • Liu, A., Fong, A., Becket, E., Yuan, J., Tamae, C., Medrano, L., Maiz, M., Wahba, C., Lee, C., Lee, K., Tran, K. P., Yang, H., Hoffman, R. M., Salih, A., and Miller, J. H. (2011), “Selective Advantage of Resistant Strains at Trace Levels of Antibiotics: A Simple and Ultrasensitive Color Test for Detection of Antibiotics and Genotoxic Agents,” Antimicrobial Agents and Chemotherapy, 55, pp 507–515. doi:10.1128/AAC.01182-10
  • Davin-Regli, A. and Pagès, J. M. (2012), “Cross-Resistance between Biocides and Antimicrobials: An Emerging Question,” Revue scientifique et technique, 31, pp 89–104. doi:10.20506/rst.31.1.2099
  • Hammarlund, S. P. and Harcombe, W. R. (2019), “Refining the Stress Gradient Hypothesis in a Microbial Community,” Proceedings of the National Academy of Sciences USA, 116(32), pp 15760–15762. doi:10.1073/pnas.1910420116
  • Bertness, M. D. and Callaway, R. (1994), “Positive Interactions in Communities,” Trends in Ecology and Evolution, 9(5), pp 191–193. doi:10.1016/0169-5347(94)90088-4
  • Xu, D., Jia, R., Li, Y., and Gu, T. (2017), “Advances in the Treatment of Problematic Industrial Biofilms,” Journal of Microbiology and Biotechnology, 33, Article 97, pp 1–10.
  • Kazi, M. and Annapure, U. S. (2016), “Bacteriophage Biocontrol of Foodborne Pathogens,” Journal of Food Science and Technology, 53, pp 1355–1362. doi:10.1007/s13197-015-1996-8
  • Andersson, D. I. and Hughes, D. (2014), “Microbiological Effects of Sublethal Levels of Antibiotics,” Nature Review Microbiology, 12, pp 465–478. doi:10.1038/nrmicro3270
  • Bergsma-Vlami, M., Prins, M. E., Staats, M., and Raaijmakers, J. M. (2005), “Assessment of Genotypic Diversity of Antibiotic-Producing Pseudomonas Species in the Rhizosphere by Denaturing Gradient Gel Electrophoresis,” Applied and Environmental Microbiology, 71, pp 993–1003. doi:10.1128/AEM.71.2.993-1003.2005
  • Timper, P., Koné, D., Yin, J., Ji, P., and McSpadden Gardener, B. B. (2009), “Evaluation of an Antibiotic-Producing Strain of Pseudomonas fluorescens for Suppression of Plant-Parasitic Nematodes,” Journal of Nematology, 41, pp 234–240.
  • Kiprianova, E. A., Kochko, V. V., Zelena, L. B., Churkina, L. N., and Avdeeva, L. V. (1993), “Pseudomonas batumici spp. nov., the Antibiotic-Producing Bacteria Isolated from Soil of the Caucasus Black Sea Coast,Mikrobiolohichnyi Zhurnal, 73, pp 3–8.
  • Garbeva, P., Tyc, O., Remus-Emsermann, van der Wal, A., Vos, M., Silby, M., and de Boer, W. (2011), “No Apparent Costs for Facultative Antibiotic Production by the Soil Bacterium Pseudomonas fluorescens Pf0-1,” PLoS ONE, 6(11), Article e27266, pp 1–7. doi:10.1371/journal.pone.0027266
  • Mavrodi, O. V., Mavrodi, D. V., Parejko, J. A., Thomashow, L. S., and Weller, D. M. (2012), “Irrigation Differentially Impacts Populations of Indigenous Antibiotic-Producing Pseudomonas spp. in the Rhizosphere of Wheat,” Applied and Environmental Microbiology, 78, pp 3214–3220. doi:10.1128/AEM.07968-11
  • Gionco, B., Tavares, E. R., de Oliveira, A. G., Yamada-Ogatta, S. F., do Carmo, A. O., de Pádua Pereira, U., Chideroli, R. T., Aimionato, A. S., Navarro, M. O. P., Chryssafidis, A. L., and Andrade, G. (2017), “New Insights about Antibiotic Production by Pseudomonas aeruginosa: A Gene Expression Analysis,” Frontiers in Chemistry, 5, Article 66, pp 1–10.  doi:10.3389/fchem.2017.00066
  • Montes Vidal, D., von Rymon-Lipinski, A. L., Ravella, S., Groenhagen, U., Herrman, J., Zaburannyi, N., Zarbin, P. H., Varadarajan, A. R., Ahrens, C. H., Weisskopf, L., Müller, R., and Schulz, S. (2017), “Long-Chain Alkyl Cyanides: Unprecedented Volatile Compounds Released by Pseudomonas and Micromonospora Bacteria,” Angewandte Chemie International Edition, 56, pp 4342–4346. doi:10.1002/anie.201611940
  • Fernández-Piñar, R., Espinosa-Urgel, M., Dubern, J.-F., Heeb, S., Ramos, J. L., and Cámara, M. (2012), “Fatty Acid–Mediated Signalling between Two Pseudomonas Species,” Environmental Microbiology Reports, 4, pp 417–423. doi:10.1111/j.1758-2229.2012.00349.x
  • Innerebner, G., Knief, C., and Vorholt, J. A. (2011), “Protection of Arabidopsis thaliana against Leaf-Pathogenic Pseudomonas syringae by Sphingomonas Strains in a Controlled Model System,” Applied and Environmental Microbiology, 77, pp 3202–3210. doi:10.1128/AEM.00133-11
  • Houry, A., Gohar, M., Deschamps, J., Tischenko, E., Aymerich, S., Gruss, A., and Briandet, R. (2012), “Bacterial Swimmers That Infiltrate and Take Over the Biofilm Matrix,” Proceedings of the National Academy of Sciences USA, 109, pp 13088–13093. doi:10.1073/pnas.1200791109
  • Kuypers, M. M. M., Marchant, H. K., and Kartal, B. (2018), “The Microbial Nitrogen-Cycling Network,” Nature Review Microbiology, 16, pp 263–276. doi:10.1038/nrmicro.2018.9