269
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

An Experimental and Numerical Evaluation of Steel A105 Friction Coefficient Using Different Lubricants at High Temperature

ORCID Icon, & ORCID Icon
Pages 25-31 | Received 23 Oct 2020, Accepted 04 Aug 2021, Published online: 29 Oct 2021

References

  • Trzepiecinski, T. and Lemu, H. G. (2020), “Recent Developments and Trends in the Friction Testing for Conventional Sheet Metal Forming and Incremental Sheet Forming,” Metals, 10, pp 47. doi:10.3390/met10010047.
  • Dohda, K., Boher, C., Rezai-Aria, F., and Mahayotsanun, N. (2015), “Tribology in Metal Forming at Elevated Temperatures,” Friction, 3, pp 1–27. doi:10.1007/s40544-015-0077-3
  • Buchner, B., Maderthoner, G., and Buchmayr, B. (2008), “Characterisation of Different Lubricants Concerning the Friction Coefficient in Forging of AA2618,” Journal of Materials Processing Technology, 198, pp 41–47. doi:10.1016/j.jmatprotec.2007.06.057
  • Joun, M., Moon, H., Choi, I., Lee, M., and Jun, B. (2009), “Effects of Friction Laws on Metal Forming Processes,” Tribology International, 42, pp 311–319. doi:10.1016/j.triboint.2008.06.012
  • Petersen, S., Martins, P., and Bay, N. (1997), “Friction in Bulk Metal Forming: A General Friction Model vs. the Law of Constant Friction,” Journal of Materials Processing Technology, 66, pp 186–194. doi:10.1016/S0924-0136(96)02518-6
  • Hu, Z. and Dean, T. (2000), “A Study of Surface Topography, Friction and Lubricants in Metalforming,” International Journal of Machine Tools and Manufacture, 40, pp 1637–1649. doi:10.1016/S0890-6955(00)00014-6
  • Khalili, K., Eftekhari Shahri, S. E., Kahhal, P., and Khalili, M. S. (2011), “Wrinkling Study in Tube Hydroforming Process,” Key Engineering Materials, 473, pp 151–158. doi:10.4028/www.scientific.net/KEM.473.151
  • Khalili, K., Kahhal, P., Shari, E. E., and Khalili, M. S. (2011), “Blank Optimization in Elliptical-Shape Sheet Metal Forming Using Response Surface Model Coupled with Reduced Basis Technique and Finite Element Analysis,” Key Engineering Materials, 473, pp 683–690. doi:10.4028/www.scientific.net/KEM.473.683
  • Rao, K. and Sivaram, K. (1993), “A Review of Ring-Compression Testing and Applicability of the Calibration Curves,” Journal of Materials Processing Technology, 37, pp 295–318. doi:10.1016/0924-0136(93)90098-Q
  • Orooji, Y., Jaleh, B., Homayouni, F., Fakhri, P., Kashfi, M., Torkamany, M. J., and Yousefi, A. A. (2020), “Laser Ablation–Assisted Synthesis of Poly (Vinylidene Fluoride)/Au Nanocomposites: Crystalline Phase and Micromechanical Finite Element Analysis,” Polymers, 12, pp 2630. doi: 10.3390/polym12112630
  • Kashfi, M., Fakhri, P., Amini, B., Yavari, N., Rashidi, B., Kong, L., and Bagherzadeh, R. “A Novel Approach to Determining Piezoelectric Properties of Nanogenerators Based on PVDF Nanofibers Using Iterative Finite Element Simulation for Walking Energy Harvesting,” Journal of Industrial Textiles. doi: 10.1177%2F1528083720926493
  • Majzoobi, G. H., Rahmani, K., and Kashfi, M. (2020), “The Effect of Pre-Compaction on Properties of Mg/SiC Nanocomposites Compacted at High Strain Rates,” Journal of Stress Analysis, 4, pp 19–28.
  • Sofuoglu, H. and Rasty, J. (1999), “On the Measurement of Friction Coefficient Utilizing the Ring Compression Test,” Tribology International, 32, pp 327–335. doi:10.1016/S0301-679X(99)00055-9
  • Male, A. (1964), “A Method for the Determination of the Coefficient of Friction of Metals under Conditions of Bulk Plastic Deformation,” Journal of the Institute of Metals, 93, pp 38–46.
  • Male, A. (1965), “The Effect of Temperature on the Frictional Behaviour of Various Metals during Mechanical Working,” Journal of the Institute of Metals, 93, pp 489–494.
  • Robinson, T., Ou, H., and Armstrong, C. G. (2004), “Study on Ring Compression Test Using Physical Modelling and FE Simulation,” Journal of Materials Processing Technology, 153, pp 54–59. doi:10.1016/j.jmatprotec.2004.04.045
  • Felder, E. and Montagu, J. (1980), “Friction and Wear during the Hot Forging of Steels,” Tribology International, 13, pp 61–68. doi:10.1016/0301-679X(80)90011-0
  • Sofuoglu, H., Gedikli, H., and Rasty, J. (2001), “Determination of Friction Coefficient by Employing the Ring Compression Test,” Journal of Engineering Materials and Technology, 123, pp 338–348. doi:10.1115/1.1369601
  • Shahriari, D., Amiri, A., and Sadeghi, M. (2010), “Study on Hot Ring Compression Test of Nimonic 115 Superalloy Using Experimental Observations and 3D FEM Simulation,” Journal of Materials Engineering and Performance, 19, pp 633–642. doi:10.1007/s11665-009-9522-7
  • Zhu, Y., Zeng, W., Ma, X., Tai, Q., Li, Z., and Li, X. (2011), “Determination of the Friction Factor of Ti-6Al-4V Titanium Alloy in Hot Forging by Means of Ring-Compression Test Using FEM,” Tribology International, 44, pp 2074–2080. doi:10.1016/j.triboint.2011.07.001
  • Mirahmadi, S. J., Hamedi, M., and Cheraghzadeh, M. (2015), “Investigating Friction Factor in Forging of Ti-6Al-4V through Isothermal Ring Compression Test,” Tribology Transactions, 58, pp 778–785. doi:10.1080/10402004.2015.1019598
  • ASTM E9-19 ( 2019), “Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature.” West Conshohocken, PA: ASTM International.
  • Bridgman, P. W. (1952), Studies in Large Plastic Flow and Fracture, McGraw-Hill: New York.
  • Fereshteh-Saniee, F. and Fatehi-Sichani, F. (2006) “An Investigation on Determination of Flow Curves at Room Temperature and under Forming Conditions,” Journal of Materials Processing Technology, 177, pp 478–482. doi:10.1016/j.jmatprotec.2006.04.043
  • Fereshteh-Saniee, F., Fallah-Nejad, K., Beheshtiha, A. S., and Badnava, H. (2013), “Investigation of Tension and Compression Behavior of AZ80 Magnesium Alloy,” Materials & Design, 50, pp 702–712.
  • Vesna, M. and Stefanovic, M. (2003), “Friction Studies Utilizing the Ring-Compression Test—Part II,” Tribology in Industry, 25, pp 76–82.
  • Shahriari, D., Sadeghi, M., Ebrahimi, G., and Kim, K. (2011), “Effects of Lubricant and Temperature on Friction Coefficient during Hot Forging of Nimonic 115 Superalloy,” Kovove Materialy, 49, pp 375–383.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.