196
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Influence of Oleic Acid–Treated LaF3 Nanoparticles as an Additive on Extreme Pressure Properties of Various Grades of Polyalphaolefins

& ORCID Icon
Pages 96-113 | Received 11 Jul 2021, Accepted 02 Nov 2021, Published online: 01 Dec 2021

References

  • Holmberg, K., Andersson, P., and Erdemir, A. (2012), “Global Energy Consumption Due to Friction in Passenger Cars,” Tribology International, 47, pp 221–234. doi:10.1016/j.triboint.2011.11.022
  • Holmberg, K., Andersson, P., Nylund, N.-O., Mäkelä, K., and Erdemir, A. (2014), “Global Energy Consumption Due to Friction in Trucks and Buses,” Tribology International, 78, pp 94–114. doi:10.1016/j.triboint.2014.05.004
  • Mortier, R. M., Fox, M. F., and Orszulik, S. T. (Eds.). (2010), Chemistry and Technology of Lubricants, 3rd Ed., Springer: Dordrecht.
  • Rudnick, L. R. (2005), Synthetics, Mineral Oils, and Bio-Based Lubricants, CRC Press: New York.
  • MarketsandMarkets. (2019), “Synthetic Lubricants Market by Type (PAO, PAG, Esters, Group III), Application (Engine Oil, Hydraulic Fluids, Metalworking Fluids, Compressor Oil, Gear Oil, Refrigeration Oil, Transmission Fluids, Turbine Oil), Region—Global Forecast to 2023,” Available at: https://www.marketsandmarkets.com/Market-Reports/synthetic-lubricant-market-141429702.html (accessed July 4, 2020).
  • Benda, R., Bullen, J., and Plomer, A. (1996), “Synthetics Basics: Polyalphaolefins—Base Fluids for High-Performance Lubricants,” Journal of Synthetic Lubrication, 13(1), pp 41–57. doi:10.1002/jsl.3000130105
  • Rudnick, L. R. (2005), Synthetics, Mineral Oils, and Bio-Based Lubricants: Chemistry and Technology, CRC Press: New York.
  • Rudnick, L. R. (2017), Lubricant Additives: Chemistry and Applications, CRC Press: Boca Raton, FL.
  • Kumar, H. and Harsha, A. P. (2021), “Enhanced Lubrication Ability of Polyalphaolefin and Polypropylene Glycol by COOH-Functionalized Multiwalled Carbon Nanotubes as an Additive,” Journal of Materials Engineering and Performance, 30(2), pp 1075–1089. doi:10.1007/s11665-020-05450-0
  • Guo, H., Chen, F., Liu, R., and Iglesias, P. (2020), “Lubricating Ability of Magnesium Silicate Hydroxide–Based Nanopowder as Lubricant Additive in Steel–Steel and Ceramic–Steel Contacts,” Tribology Transactions, 63(4), pp 585–596. doi:10.1080/10402004.2019.1710312
  • Tzanakis, I., Hadfield, M., Thomas, B., Noya, S. M., Henshaw, I., and Austen, S. (2012), “Future Perspectives on Sustainable Tribology,” Renewable and Sustainable Energy Reviews, 16(6), pp 4126–4140. doi:10.1016/j.rser.2012.02.064
  • Akbulut, M. (2012), “Nanoparticle-Based Lubrication Systems,” Journal of Powder Metallurgy and Mining, 1(1), pp 1–3.
  • Li, Z., Hou, X., Yu, L., Zhang, Z., and Zhang, P. (2014), “Preparation of Lanthanum Trifluoride Nanoparticles Surface-Capped by Tributyl Phosphate and Evaluation of Their Tribological Properties as Lubricant Additive in Liquid Paraffin,” Applied Surface Science, 292, pp 971–977. doi:10.1016/j.apsusc.2013.12.089
  • Choi, Y., Lee, C., Hwang, Y., Park, M., Lee, J., Choi, C., and Jung, M. (2009), “Tribological Behavior of Copper Nanoparticles as Additives in Oil,” Current Applied Physics, 9(2), pp e124–e127. doi:10.1016/j.cap.2008.12.050
  • Padgurskas, J., Rukuiza, R., Prosyčevas, I., and Kreivaitis, R. (2013), “Tribological Properties of Lubricant Additives of Fe, Cu and Co Nanoparticles,” Tribology International, 60, pp 224–232. doi:10.1016/j.triboint.2012.10.024
  • Gupta, R. N. and Harsha, A. P. (2018), “Tribological Study of Castor Oil with Surface-Modified CuO Nanoparticles in Boundary Lubrication,” Industrial Lubrication and Tribology, 70(4), pp 700–710. doi:10.1108/ILT-02-2017-0030
  • Kashyap, A. and Harsha, A. (2016), “Tribological Studies on Chemically Modified Rapeseed Oil with CuO and CeO2 Nanoparticles,” Proceedings of the Institution of Mechanical Engineers - Part J: Journal of Engineering Tribology, 230(12), pp 1562–1571. doi:10.1177/1350650116641328
  • Rawat, S. S., Harsha, A. P., Das, S., and Deepak, A. P. (2020), “Effect of CuO and ZnO Nano-Additives on the Tribological Performance of Paraffin Oil–Based Lithium Grease,” Tribology Transactions, 63(1), pp 90–100. doi:10.1080/10402004.2019.1664684
  • Rawat, S. S., Harsha, A. P., and Deepak, A. P. (2019), “Tribological Performance of Paraffin Grease with Silica Nanoparticles as an Additive,” Applied Nanoscience (Switzerland), 9(3), pp 305–315. doi:10.1007/s13204-018-0911-9
  • Kogovšek, J. and Kalin, M. (2014), “Various MoS2-, WS2- and C-Based Micro- and Nanoparticles in Boundary Lubrication,” Tribology Letters, 53(3), pp 585–597. doi:10.1007/s11249-014-0296-1
  • Rawat, S. S., Harsha, A. P., Agarwal, D. P., Kumari, S., and Khatri, O. P. (2019), “Pristine and Alkylated MoS2 Nanosheets for Enhancement of Tribological Performance of Paraffin Grease under Boundary Lubrication Regime,” Journal of Tribology, 141(7), pp 072102–12. doi:10.1115/1.4043606
  • Upadhyay, R. K. and Kumar, A. (2019), “Boundary Lubrication Properties and Contact Mechanism of Carbon/MoS2 Based Nanolubricants under Steel/Steel Contact,” Colloid and Interface Science Communications, 31, p 100186. doi:10.1016/j.colcom.2019.100186
  • Kumar, H. and Harsha, A. P. (2021), “Taguchi Optimization of Various Parameters for Tribological Performance of Polyalphaolefins Based Nanolubricants,” Proceedings of the Institution of Mechanical Engineers - Part J: Journal of Engineering Tribology, 235(6), pp 1262–1280. doi:10.1177/1350650120972294
  • Rawat, S. S., Harsha, A. P., Khatri, O. P., and Wäsche, R. (2021), “Pristine, Reduced, and Alkylated Graphene Oxide as Additives to Paraffin Grease for Enhancement of Tribological Properties,” Journal of Tribology, 143(2), pp 1–11. doi:10.1115/1.4047952
  • Rawat, S. S., Harsha, A. P., Chouhan, A., and Khatri, O. P. (2020), “Effect of Graphene-Based Nanoadditives on the Tribological and Rheological Performance of Paraffin Grease,” Journal of Materials Engineering and Performance, 29(4), pp 2235–2247. doi:10.1007/s11665-020-04789-8
  • Gupta, R. N. and Harsha, A. P. (2018), “Tribological Evaluation of Calcium–Copper–Titanate/Cerium Oxide–Based Nanolubricants in Sliding Contact,” Lubrication Science, 30(4), pp 175–187. doi:10.1002/ls.1415
  • Zhang, M., Wang, X., and Liu, W. (2013), “Tribological Behavior of LaF3 Nanoparticles as Additives in Poly‐alpha‐olefin,” Industrial Lubrication and Tribology, 65(4), pp 226–235. doi:10.1108/00368791311331202
  • Wang, L., Zhang, M., Wang, X., and Liu, W. (2008), “The Preparation of CeF3 Nanocluster Capped with Oleic Acid by Extraction Method and Application to Lithium Grease,” Materials Research Bulletin, 43(8–9), pp 2220–2227. doi:10.1016/j.materresbull.2007.08.024
  • Zhang, H. B., Xia, Y. Q., Liu, Z. L., and Zhao, J. (2012), “Tribological Properties of Two Kinds of Rare Earth Complexes as Lubricant Additives for Laser Cladding Coatings,” Industrial Lubrication and Tribology, 64(1), pp 23–32. doi:10.1108/00368791211196862
  • Hou, X., He, J., Yu, L., Li, Z., Zhang, Z., and Zhang, P. (2014), “Preparation and Tribological Properties of Fluorosilane Surface-Modified Lanthanum Trifluoride Nanoparticles as Additive of Fluoro Silicone Oil,” Applied Surface Science, 316(1), pp 515–523. doi:10.1016/j.apsusc.2014.07.171
  • Zhang, J., Zhang, Y., Zhang, S., Yu, L., Zhang, P., and Zhang, Z. (2013), “Preparation of Water-Soluble Lanthanum Fluoride Nanoparticles and Evaluation of Their Tribological Properties,” Tribology Letters, 52(2), pp 305–314. doi:10.1007/s11249-013-0215-x
  • Safronikhin, A., Ehrlich, H., and Lisichkin, G. (2014), “LaF3 Nanoparticles Surface Modified with Tryptophan and Their Optical Properties,” Applied Surface Science, 317, pp 480–485. doi:10.1016/j.apsusc.2014.08.130
  • Zhou, J., Wu, Z., Zhang, Z., Liu, W., and Dang, H. (2001), “Study on an Antiwear and Extreme Pressure Additive of Surface Coated LaF3 Nanoparticles in Liquid Paraffin,” Wear, 249(5–6), pp 333–337. doi:10.1016/S0043-1648(00)00547-0
  • D2783-03. (2015), “Standard Test Method for Measurement of Extreme-Pressure Properties of Lubricating Fluids (Four-Ball Method),” Annual Book of ASTM Standards, Vol. 88, pp 1–8, West Conshohocken, PA, USA: American Society of Lubrication Engineers (ASLE), ASTM International.
  • Kumar, H. and Harsha, A. P. (2020), “Investigation on Friction, Anti-Wear, and Extreme Pressure Properties of Different Grades of Polyalphaolefins With Functionalized Multi-Walled Carbon Nanotubes as an Additive,” Journal of Tribology, 142(8), pp 081702–14. doi:10.1115/1.4046571
  • Hamrock, B. J. and Dowson, D. (1978), “Minimum Film Thickness in Elliptical Contacts for Different Regimes of Fluid-Film Lubrication,” NASA Technical Paper 1342.
  • Stachowiak, G. W. and Batchelor, A. W. (2013), Engineering Tribology, Waltham, Massachusetts, USA: Butterworth-Heinemann.
  • Hamrock, B. J., Schmid, S. R., and Jacobson, B. O. (2004), Fundamental of Fluid Film Lubrication, Marcel Dekker: New York.
  • Premaratne, W. A. P. J., Priyadarshana, W. M. G. I., Gunawardena, S. H. P., and De Alwis, A. A. P. (2014), “Synthesis of Nanosilica from Paddy Husk Ash and Their Surface Functionalization,” Journal of Science of the University of Kelaniya Sri Lanka, 8, pp 33–48. doi:10.4038/josuk.v8i0.7238
  • Labidi, N. S. and Iddou, A. (2007), “Adsorption of Oleic Acid on Quartz/Water Interface,” Journal of the Saudi Chemical Society, 11(2), pp 221–234.
  • Hou, X., Yang, C., He, J., Li, Z., and Zhang, Z. (2015), “Preparation and Tribological Properties of Lanthanum Trifluoride Nanoparticles–Decorated Graphene Oxide Nanosheets,” Industrial and Engineering Chemistry Research, 54(17), pp 4773–4780. doi:10.1021/acs.iecr.5b00576
  • He, Y., Wang, L., Wang, X., Shen, C., Hu, Q., Zhou, A., and Liu, X. (2020), “Surface Reformation of 2D MXene by In Situ LaF3-Decorated and Enhancement of Energy Storage in Lithium-Ion Batteries,” Journal of Materials Science: Materials in Electronics, 31(9), pp 6735–6743. doi:10.1007/s10854-020-03230-z
  • Secu, C. E., Matei, E., Negrila, C., and Secu, M. (2019), “The Influence of the Nanocrystals Size and Surface on the Yb/Er Doped LaF3 Luminescence Properties,” Journal of Alloys and Compounds, 791, pp 1098–1104. doi:10.1016/j.jallcom.2019.03.267
  • Yadav, A. A., Lokhande, V. C., Bulakhe, R. N., and Lokhande, C. D. (2017), “Amperometric CO2 Gas Sensor Based on Interconnected Web-Like Nanoparticles of La2O3 Synthesized by Ultrasonic Spray Pyrolysis,” Microchimica Acta, 184(10), pp 3713–3720. doi:10.1007/s00604-017-2364-3
  • Briggs, D. (2005), “X-ray Photoelectron Spectroscopy (XPS),” Handbook of Adhesion, pp 621–622, John Wiley & Sons: Chichester, UK.
  • Edachery, V., Shashank, R., and Kailas, S. V., (2021), “Influence of Surface Texture Directionality and Roughness on Wettability, Sliding Angle, Contact Angle Hysteresis, and Lubricant Entrapment Capability,” Tribology International, 158, p 106932. doi:10.1016/j.triboint.2021.106932
  • Kumar, H. and Harsha, A. P. (2021), “Augmentation in Tribological Performance of Polyalphaolefins by COOH-Functionalized Multiwalled Carbon Nanotubes as an Additive in Boundary Lubrication Conditions,” Journal of Tribology, 143(10), pp 102202–14. doi:10.1115/1.4051392
  • Rawat, S. S., Harsha, A. P., and Khatri, O. P. (2021), “Synergistic Effect of Binary Systems of Nanostructured MoS2/SiO2 and GO/SiO2 as Additives to Coconut Oil–Derived Grease: Enhancement of Physicochemical and Lubrication Properties,” Lubrication Science, 33(5), pp 290–307. doi:10.1002/ls.1554
  • Gadelmawla, E. S., Koura, M. M., Maksoud, T. M. A., Elewa, I. M., and Soliman, H. H. (2002), “Roughness Parameters,” Journal of Materials Processing Technology, 123(1), pp 133–145. doi:10.1016/S0924-0136(02)00060-2
  • Waikar, R. A. and Guo, Y. B. (2008), “A Comprehensive Characterization of 3D Surface Topography Induced by Hard Turning versus Grinding,” Journal of Materials Processing Technology, 197(1–3), pp 189–199.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.