334
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Temperature Effect on Load Distribution, Friction, and Wear of a Grease-Lubricated Spherical Roller Bearing (SRB)

ORCID Icon, ORCID Icon, &
Pages 144-161 | Received 31 Mar 2022, Accepted 10 Nov 2022, Published online: 18 Jan 2023

References

  • Sung, B. J. (2016), “Deduction of Reliability Parameter for Spherical Roller Bearing,” International Journal of Mechanical Engineering and Applications, 4(3), p 130.
  • Loriemi, A., Jacobs, G., Reisch, S., Bosse, D., and Schröder, T. (2021), “Experimental and Simulation-Based Analysis of Asymmetrical Spherical Roller Bearings as Main Bearings for Wind Turbines,” Forschung im Ingenieurwesen, 85(2), pp 189–197. doi:10.1007/s10010-021-00462-1
  • Kurashita, Y. (2008), “Rolling Bearings for Wind Turbine Generator,” Europe, 40.
  • Harris, T. A. (2001), Rolling Bearing Analysis, Hoboken, NJ: John Wiley and Sons, ISBN 0471354570.
  • Fysh, S., Oravec, E., and Medley, J. J. T. I. (1990), “An Experimental Simulation of the Tribology of Large Spherical Roller Bearings in Paper Machines,” Triobology International, 23(5), pp 317–327. doi:10.1016/0301-679X(90)90005-A
  • Morales-Espejel, G. E., and Brizmer, V. (2011), “Micropitting Modelling in Rolling–Sliding Contacts: Application to Rolling Bearings,” Tribology Transactions, 54, 4, pp 625–643. doi:10.1080/10402004.2011.587633
  • Brizmer, V., Gabelli, A., Vieillard, C., and Morales-Espejel, G. E. (2015), “An Experimental and Theoretical Study of Hybrid Bearing Micropitting Performance Under Reduced Lubrication,” Tribology Transactions, 58, 5, pp 829–835. doi:10.1080/10402004.2015.1021944
  • Vrček, A., Hultqvist, T., Johannesson, T., Marklund, P., and Larsson, R. (2020), “Micro-Pitting and Wear Characterization for Different Rolling Bearing Steels: Effect of Hardness and Heat Treatments,” Wear, 458, p 203404. doi:10.1016/j.wear.2020.203404
  • Oswald, F. B., Zaretsky, E. V., and Poplawski, J. V. (2012), “Effect of Internal Clearance on Load Distribution and Life of Radially Loaded Ball and Roller Bearings,” Tribology Transactions, 55, 2, pp 245–265. doi:10.1080/10402004.2011.639050
  • Ricci, M. C. (2009), “Internal Loading Distribution in Statically Loaded Ball Bearings Subjected to a Combined Radial and Thrust Load, Including the Effects of Temperature and Fit,” Proceedings of World Academy of Science, Engineering and Technology, WCSET Amsterdam.
  • Mitrović, R. M., Atanasovska, I. D., Soldat, N. D., and Momčilović, D. B. (2015), “Effects of Operation Temperature on Thermal Expansion and Main Parameters of Radial Ball Bearings,” Thermal Science, 19, 5, pp 1835–1844. doi:10.2298/TSCI141223091M
  • Bian, W., Wang, Z., Yuan, J., and Xu, W. (2016), “Thermo-Mechanical Analysis of Angular Contact Ball Bearing,” Journal of Mechanical Science and Technology, 30, 1, pp 297–306. doi:10.1007/s12206-015-1233-4
  • Stein, J. L., and Tu, J. (1994), “A State-Space Model for Monitoring Thermally Induced Preload in Anti-Friction Spindle Bearings of High-Speed Machine Tools,” J. Dyn. Sys., Meas., Control, 116(3), pp 372–386. doi:10.1115/1.2899232
  • Ambrożkiewicz, B., Syta, A., Meier, N., Litak, G., and Georgiadis, A. (2021), “Radial Internal Clearance Analysis in Ball Bearings,” Eksploatacja i Niezawodność, 23, 1.
  • Sharma, A., Upadhyay, N., Kankar, P. K., and Amarnath, M. (2018), “Nonlinear Dynamic Investigations on Rolling Element Bearings: A Review,” Advances in Mechanical Engineering, 10, 3, p 1687814018764148. doi:10.1177/1687814018764148
  • Ancaş, A.-D., and Gorbănescu, D. (2006), “Theoretical Models in the Study of Temperature Effect on Steel Mechanical Properties,” Bulletin of the Polytechnic Institute of Jassy, Construction. Architecture Section, 52(1–2), pp 49–54.
  • Sebeşan, I., and Zakaria, Y. (2014), “Determination of Wheel-Rail Contact Characteristics by Creating a Special Program for Calculation,” Mathematical Modelling in Civil Engineering, 10, 3, pp 48–59. doi:10.2478/mmce-2014-0015
  • Lugt, P. M. (2012), Grease Lubrication in Rolling Bearings, Hoboken, NJ: John Wiley & Sons, ISBN 1118483979.
  • Sanchez Garrido, D., Leventini, S., and Martini, A. (2021), “Effect of Temperature and Surface Roughness on the Tribological Behavior of Electric Motor Greases for Hybrid Bearing Materials,” Lubricants, 9(6), pp 59.
  • Lugt, P. M. (2009), “A Review on Grease Lubrication in Rolling Bearings,” Tribology Transactions, 52(4), pp 470–480. doi:10.1080/10402000802687940
  • Zhang, Q., Mugele, F., van den Ende, D. and Lugt, P. M. (2021), “A Model Configuration for Studying Stationary Grease Bleed in Rolling Bearings,” Tribology Transactions, 64, pp. 1127–1137. doi:10.1080/10402004.2021.1904071
  • Baart, P., van der Vorst, B., Lugt, P. M., and van Ostayen, R. A. (2010), “Oil-Bleeding Model for Lubricating Grease Based on Viscous Flow Through a Porous Microstructure,” Tribology Transactions, 53(3), pp 340–348. doi:10.1080/10402000903283326
  • Baker, A. (1958), “Grease Bleeding—A Factor in Ball Bearing Performance,” NLGI Spokesman, 22(9), pp 271–277.
  • Van Zoelen, M., Venner, C. H. and Lugt, P. M. (2010), “The Prediction of Contact Pressure-Induced Film Thickness Decay in Starved Lubricated Rolling Bearings,” Tribology Transactions, 53(6), pp 831–841. doi:10.1080/10402004.2010.492925
  • Pozzebon, M. L., Lin, C.-L., and Meehan, P. A. (2020), “On the Modeling of Wear in Grease-Lubricated Spherical Roller Bearings,” Tribology Transactions, 63, 806–819. doi:10.1080/10402004.2020.1743400
  • Chang, H., Lan, C.-W., Chen, C.-H., Kao, M.-J., and Guo, J.-B. (2014), “Anti-Wear and Friction Properties of Nanoparticles as Additives in the Lithium Grease,” International Journal of Precision Engineering and Manufacturing, 15(10), pp 2059–2063. doi:10.1007/s12541-014-0563-y
  • Nehme, G. N. (2017), “Tribological Behavior and Wear Prediction of Molybdenum Disulfide Grease Lubricated Rolling Bearings Under Variable Loads and Speeds via Experimental and Statistical Approach,” Wear, 376, pp 876–884. doi:10.1016/j.wear.2017.01.007
  • Nehme, G. N. (2011), “The Tribological Performance of Plain and Fully Formulated Commercial Engine Oil Under 2 Different Rotational Speeds and Extreme Pressure Contact Using Design of Experiment,” Tribology Transactions, 54(4), pp 568–588. doi:10.1080/10402004.2011.581793
  • Nehme, G. N. (2012), “The Effect of FeF3/TiF3 Catalysts on the Thermal and Tribological Performance of Plain Oil ZDDP Under Extreme Pressure Loading,” Wear, 278, pp 9–17. doi:10.1016/j.wear.2011.11.004
  • Nehme, G., and Dib, M. (2011), “Fluorinated Mix in Plain ZDDP Oil and Commercial Oil Using Design of Experiment Analysis of All Interactions and Fundamental Study of Fluorinated Mix in Plain ZDDP Oils Under 2 Different r/min Test Cycles and Extreme Boundary Lubrication,” Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 225(4), pp 193–211. doi:10.1177/1350650111398717
  • Kuhn, E. (2013), “Friction and Wear of a Grease Lubricated Contact—An Energetic Approach,” Tribology—Fundamentals and Advancements.
  • Masjedi, M., and Khonsari, M. (2015), “An Engineering Approach for Rapid Evaluation of Traction Coefficient and Wear in Mixed EHL,” Tribology International, 92, pp 184–190. doi:10.1016/j.triboint.2015.05.013
  • Prajapati, D. K., and Tiwari, M. (2019), “Effect of Topography Parameter, Load, and Surface Roughness on Friction Coefficient in Mixed Lubrication Regime,” Lubrication Science, 31(5), pp 218–228. doi:10.1002/ls.1459
  • Liu, Q., Napel, W. T., Tripp, J. H., Lugt, P. M., and Meeuwenoord, R. (2009), “Friction in Highly Loaded Mixed Lubricated Point Contacts,” Tribology Transactions, 52(3), pp 360–369. doi:10.1080/10402000802563133
  • Zhang, Z., Wang, J., Zhou, G., and Pei, X. (2018), “Analysis of Mixed Lubrication of RV Reducer Turning Arm Roller Bearing,” Industrial Lubrication and Tribology. doi:10.1108/ILT-12-2016-0311
  • Parsa, M., and Akbarzadeh, S. (2014), “A New Load-Sharing-Based Approach to Model Mixed-Lubrication Contact of Spur Gears,” Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 228(11), pp 1319–1329.
  • Hao, L., and Meng, Y. (2015), “Numerical Prediction of Wear Process of an Initial Line Contact in Mixed Lubrication Conditions,” Tribology Letters, 60(2), pp 31.
  • Zhou, C., Xing, M., Hu, B., and Shi, Z. (2020), “A Modified Wear Model Considering Contact Temperature for Spur Gears in Mixed Elastohydrodynamic Lubrication,” Tribology Letters, 68(4), pp 1–17.
  • Pei, X., Pu, W., Yang, J., and Zhang, Y. (2020), “Wear Law in Mixed Lubrication Based on Stress-Promoted Thermal Activation,” Friction, pp 1–13. doi:10.1007/s40544-020-0365-4
  • Zhao, E.-H., Ma, B., and Li, H.-Y. (2017), “Wear and Lubrication Behaviors of Cu-Based Friction Pairs With Asperity Contacts: Numerical and Experimental Studies,” Tribology Letters, 65(2), p 69.
  • Rosenkranz, L., Richter, S., Jacobs, G., Mikitisin, A., Mayer, J., Stratmann, A., and König, F. (2021), “Influence of Temperature on Wear Performance of Greases in Rolling Bearings,” Industrial Lubrication and Tribology. doi:10.1108/ILT-03-2021-0076
  • Rowe, C. (1966), “Some Aspects of the Heat of Adsorption in the Function of a Boundary Lubricant,” ASLE Transactions, 9(1), pp 101–111. doi:10.1080/05698196608972126
  • El-Thalji, I., and Jantunen, E. (2014), “A Descriptive Model of Wear Evolution in Rolling Bearings,” Engineering Failure Analysis, 45, pp 204–224. doi:10.1016/j.engfailanal.2014.06.004
  • Takabi, J., and Khonsari, M. (2013), “Experimental Testing and Thermal Analysis of Ball Bearings,” Tribology International, 60, pp 93–103. doi:10.1016/j.triboint.2012.10.009
  • Milne, C., and Meehan, P. A. (2016), “Wear Simulation for Boundary Lubricated, Radially Loaded, Spherical Roller Bearings,” Proc. The Second Australasian Acoustical Societies' Conference, Australian Acoustical Society, Queensland Division, ISBN 0909882266.
  • Wan, C., and Zhaoying, Z. (1991), Analysis of Rolling Element Bearings, London: Mechanical Engineering Publications, ISBN 0852987455.
  • Tian, X., and Kennedy, F. E., Jr. (1994), “Maximum and Average Flash Temperatures in Sliding Contacts,” Journal of Tribology, 116(1), 167–174. doi:10.1115/1.2927035
  • Olofsson, U., Andersson, S., and Björklund, S. (2000), “Simulation of Mild Wear in Boundary Lubricated Spherical Roller Thrust Bearings,” Wear, 241(2), pp 180–185. doi:10.1016/S0043-1648(00)00373-2
  • Ramesh, A., and Melkote, S. N. (2008), “Modeling of White Layer Formation Under Thermally Dominant Conditions in Orthogonal Machining of Hardened AISI 52100 Steel,” International Journal of Machine Tools and Manufacture, 48(3–4), pp 402–414.
  • Spikes, H., and Jie, Z. (2014), “History, Origins and Prediction of Elastohydrodynamic Friction,” Tribology Letters, 56(1), pp 1–25. doi:10.1007/s11249-014-0396-y
  • Johnson, K. L., and Tevaarwerk, J. (1977), “Shear Behaviour of Elastohydrodynamic Oil Films,” Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 356(1685), pp 215–236.
  • Bonhomme, J., and Mollon, V. (2015), “A Method to Determine the Rolling Resistance Coefficient by Means of Uniaxial Testing Machines,” Experimental Techniques 39, 3, pp 37–41. doi:10.1111/ext.12023
  • https://en.wikipedia.org/wiki/Rolling_resistance#cite_note-Hibbeler-3.
  • Johnson, K., Greenwood, J., and Poon, S. (1972), “A Simple Theory of Asperity Contact in Elastohydro-Dynamic Lubrication,” Wear, 19(1), pp 91–108. doi:10.1016/0043-1648(72)90445-0
  • Beheshti, A., and Khonsari, M. (2013), “An Engineering Approach for the Prediction of Wear in Mixed Lubricated Contacts,” Wear, 308(1–2), pp 121–131. doi:10.1016/j.wear.2013.10.004
  • Roelands, C. J. A. (1966), “Correlational Aspects of the Viscosity-Temperature-Pressure Relationship of Lubricating Oils,” Doctoral thesis, Technische Hogeschool te Delt.
  • Huang, L., Guo, D., and Shizhu, W. (2016), “Film Thickness Decay and Replenishment in Point Contact Lubricated With Different Greases: A Study Into Oil Bleeding and the Evolution of Lubricant Reservoir,” Tribology International, 93, pp 620–627. doi:10.1016/j.triboint.2014.11.005
  • Wang, W.-y., Liu, B., and Kodur, V. (2013), “Effect of Temperature on Strength and elastic Modulus of High-Strength Steel,” Journal of Materials in Civil Engineering, 25(2), pp 174–182. doi:10.1061/(ASCE)MT.1943-5533.0000600
  • Ye, Z.-h., and Wang, L.-q. (2015), “Optimization Analysis on Assembly Interference of Cylindrical Roller Bearings,” Advances in Mechanical Engineering, 7(7), p 1687814015593868. doi:10.1177/1687814015593868
  • Takahashi, K., Suzuki, D. and Nagatomo, T. (2019), “Effect of Axial Clearance on Rolling Element Load of Double Row Tapered Roller Bearings,” Quarterly Report of RTRI, 60(3), pp 196–201. doi:10.2219/rtriqr.60.3_196
  • Gonçalves, D., Vieira, A., Carneiro, A., Campos, A. V., and Seabra, J. H. (2017), “Film Thickness and Friction Relationship in Grease Lubricated Rough Contacts,” Lubricants, 5(3), p 34. doi:10.3390/lubricants5030034
  • Hansen, J., Björling, M., and Larsson, R. J. S. R. (2020), “Lubricant Film Formation in Rough Surface Non-Conformal Conjunctions Subjected to GPa Pressures and High Slide-to-Roll Ratios,” Scientific Reports, 10(1), art 22250. doi:10.1038/s41598-020-77434-y
  • Hao, L., and Meng, Y. (2015), “Numerical Prediction of Wear Process of an Initial Line Contact in Mixed Lubrication Conditions,” Tribology Letters, 60(2), pp 1–16. doi:10.1007/s11249-015-0609-z
  • Lin, C.-L., and Meehan, P. A. (2019), “Microstructure Characterization of Degraded Grease in Axle Roller Bearings,” Tribology Transactions, 62(4), 667–687.
  • Lin, C.-L., and Meehan, P. A. (2021), “Morphological and Elemental Analysis of Wear Debris Naturally Formed in Grease Lubricated Railway Axle Bearings,” Wear, 484, p 203994. doi:10.1016/j.wear.2021.203994
  • Lancaster, J. K. (1957), “The Influence of Temperature on Metallic Wear,” Proceedings of the Physical Society, B 70(1), p 112. doi:10.1088/0370-1301/70/1/316
  • Zmitrowicz, A. (2005), “Wear Debris: A Review of Properties and Constitutive Models,” Journal of Theoretical and Applied Mechanics, 43.
  • Akchurin, A., Bosman, R., Lugt, P. M., and van Drogen, M. (2016), “Analysis of Wear Particles Formed in Boundary-Lubricated Sliding Contacts,” Tribology Letters, 63(2), pp 1–14. doi:10.1007/s11249-016-0701-z
  • Nikas, G. (2010), “A State-of-the-Art Review on the Effects of Particulate Contamination and Related Topics in Machine-Element Contacts,” Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 224(5), pp 453–479. doi:10.1243/13506501JET752
  • Green, D., and Lewis, R. (2008), “The Effects of Soot-Contaminated Engine Oil on Wear and Friction: A Review,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 222(9), pp 1669–1689. doi:10.1243/09544070JAUTO468

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.