87
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental and Analytical Investigation of Performance of Liquid Metal Herringbone Grooved Bearings with Cylindricity Errors

, , , , , & show all
Pages 332-347 | Received 15 Aug 2023, Accepted 11 Feb 2024, Published online: 18 Mar 2024

References

  • Beznosov, A. V., Nazarov, A. V., Bokova, T. A., and Novozhilova, O. O. (2009), “Operation of Slip Bearings and Gear Couplings in Heavy Liquid Metal,” Russian Engineering Research, 29, pp 148–153. doi:10.3103/S1068798X09020105
  • Stahlhuth, P. H. and Trippett, R. J. (1962), “Liquid Metal Bearing Performance in laminar and turbulent regimes,” A S L E Transactions, 5, pp 427–436. doi:10.1080/05698196208972486
  • Bootsma, J. and Tielemans, L. P. M. (1977), “Conditions of Leakage-Free Operation of Herringbone Grooved Journal Bearings,” Journal of Lubrication Technology, 99, pp 215–222.
  • Muijderman, E. A. (1965), “Spiral Groove Bearings,” Industrial Lubrication and Tribology, 17, pp 12–17. doi:10.1108/eb052769
  • Gerkema, J. (1985), “Gallium-Based Liquid-Metal Full-Film Lubricated Journal Bearings,” A S L E Transactions, 28, pp 47–53. doi:10.1080/05698198508981593
  • Hattori, H., Fukushima, H., Yoshii, Y., Nakamuta, H., Iwase, M., and Kitade, K. (2009), “Proposal of a High Rigidity and High Speed Rotating Mechanism Using a New Concept Hydrodynamic Bearing in X-Ray Tube for High Speed Computed Tomography,” Journal of Advanced Mechanical Design, Systems, and Manufacturing, 3, pp 105–114. doi:10.1299/jamdsm.3.105
  • Xu, M. and Chen, W. (2021), “Study on the Performance of Liquid Metal Lubricated V-Groove Bearing Considering Turbulence,” Applied Sciences, 11, 940. doi:10.3390/app11030940
  • Liu, X. and Chen, W. (2022), “Structural Design and Optimization of Herringbone Grooved Journal Bearings Considering Turbulent,” Applied Sciences, 12, 485. doi:10.3390/app12010485
  • Jao, H. C., Li, W. L., and Liu, T. L. (2017), “Analysis of Misaligned Journal Bearing with Herringbone Grooves: Consideration of Anisotropic Slips,” Microsystem Technologies, 23, pp 4687–4698. doi:10.1007/s00542-017-3283-2
  • Ma, X., Meng, X., Wang, Y., Liang, Y., and Peng, X. (2021), “Fluid Inertia Effect on Spiral-Grooved Mechanical Face Seals Considering Cavitation Effects,” Tribology Transactions, 64, pp 367–380. doi:10.1080/10402004.2020.1846829
  • Wang, C. C. and Lin, J. T. (2022), “Numerical Study of Hydrodynamic Herringbone-Grooved Journal Bearings Combined with Thrust Bearings Considering Thermal Effects,” Journal of Mechanics, 38, pp 13–21. doi:10.1093/jom/ufab036
  • Feng, H., Jiang, S., and Shang-Guan, Y. (2021), “Three-Dimensional Computational Fluid Dynamic Analysis of High-Speed Water-Lubricated Hydrodynamic Journal Bearing with Groove Texture Considering Turbulence,” Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 235, pp 2272–2286. doi:10.1177/1350650121998519
  • Zhang, S., Jiang, S., and Lin, X. (2020), “Static and Dynamic Characteristics of High-Speed Water-Lubricated Spiral-Groove Thrust Bearing Considering Cavitating and Centrifugal Effects,” Tribology International, 145, 106159. doi:10.1016/j.triboint.2020.106159
  • Iseli, E. and Schiffmann, J. (2021), “Prediction of the Reaction Forces of Spiral-Groove Gas Journal Bearings by Artificial Neural Network Regression Models,” Journal of Computational Science, 48, 101256. doi:10.1016/j.jocs.2020.101256
  • Liu, J. (2019), “A Spectral Finite Difference Method for Analysis of a Fluid-Lubricated Herringbone Grooves Journal Bearing under a Special Case at Rectangle Groove,” Applied Mathematics, 10, pp 1029–1038. doi:10.4236/am.2019.1012071
  • Jang, G. H. and Chang, D. I. (2000), “Analysis of a Hydrodynamic Herringbone Grooved Journal Bearing Considering Cavitation,” Journal of Tribology, 122, pp 103–109. doi:10.1115/1.555333
  • Zhu, H. T., and Ding, Q. (2012), “Numerical Analysis of Static Characteristics of Herringbone Grooved Hydrodynamic Journal Bearing,” Applied Mechanics and Materials, 105, pp 2259–2262.
  • Feng, K., Li, W.-J., Xie, Y.-Q., and Liu, M.-X. (2016), “Theoretical Analysis of the Slip Flow Effect on Gas-Lubricated Micro Spherical Spiral Groove Bearings for Machinery Gyroscope,” Microsystem Technologies, 22, pp 387–399. doi:10.1007/s00542-015-2487-6
  • Lin, X., Jiang, S., Zhang, C., and Liu, X. (2018), “Thermohydrodynamic Analysis of High-Speed Water-Lubricated Spiral Groove Thrust Bearing Using Cavitating Flow Model,” Journal of Tribology, 140, 051703. doi:10.1115/1.4039959
  • Lin, X., Jiang, S., Zhang, C., and Liu, X. (2018), “Thermohydrodynamic Analysis of High Speed Water-Lubricated Spiral Groove Thrust Bearing Considering Effects of Cavitation, Inertia and Turbulence,” Tribology International, 119, pp 645–658. doi:10.1016/j.triboint.2017.11.037
  • Chen, S. K., Chou, H. C., and Kang, Y. (2012), “Stability Analysis of Hydrodynamic Bearing with Herringbone Grooved Sleeve,” Tribology International, 55, pp 15–28. doi:10.1016/j.triboint.2012.05.015
  • Wang, W., He, Y., Zhao, J., Mao, J., Hu, Y., and Luo, J. (2020), “Optimization of Groove Texture Profile to Improve Hydrodynamic Lubrication Performance: Theory and Experiments,” Friction, 8, pp 83–94. doi:10.1007/s40544-018-0247-1
  • Lee, Y. T., Yang, A. S., Juan, Y. H., Liu, C. S., and Chang, Y. H. (2017), “A New Micro-Hydrodynamic Herringbone Bearing Using Slant Groove Depth Arrangements for Performance Enhancement,” Journal of Mechanics, 33, pp 725–737. doi:10.1017/jmech.2017.72
  • Yu, Y., Pu, G., Jiang, T., and Jiang, K. (2021), “Optimization of Herringbone Grooved Thrust Air Bearings for Maximum Load Capacity,” Journal of Tribology, 143, 121805. doi:10.1115/1.4050522
  • Li, B., Zhou, D., Xu, W., and Zhang, Y. (2019), “Effect of Random Roundness Error on the Stability of a Hydrodynamic Journal Bearing System Part I: Theoretical Study,” Advances in Mechanical Engineering, 11, 168781401984625. doi:10.1177/1687814019846250
  • Yang, M., Lu, H., Zhang, X., Duan, M., Bao, L., Wang, B., and Wu, W. (2021), “Influence of Surface Waviness of Journal and Bearing Bush on the Static Characteristics of Hydrodynamic Bearing,” Processes, 9, 110. doi:10.3390/pr9010110
  • Yang, J., Zhu, R., Yue, Y., Dai, G., and Yin, X. (2022), “Nonlinear Analysis of Herringbone Gear Rotor System Based on the Surface Waviness Excitation of Journal Bearing,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44, pp 1–18. doi:10.1007/s40430-021-03352-3
  • Chen, P., Ding, J., Zhuang, H., Chang, Y., and Liu, X. (2022), “Influence of Manufacturing Errors and Misalignment on the Performances of Air Journal Bearings Considering Inertia Effects Based on SUPG Finite Element Method,” Measurement, 189, 110443. doi:10.1016/j.measurement.2021.110443
  • Li, W., Liu, W., and Feng, K. (2017), “Effect of Microfabrication Defects on the Performance of Rarefaction Gas-Lubricated Micro Flexure Pivot Tilting Pad Gas Bearing in Power MEMS,” Microsystem Technologies, 23, pp 3401–3419. doi:10.1007/s00542-016-3155-1
  • Zhang, G., Zheng, J., Yu, H., Zhao, R., Shi, W., and Wang, J. (2021), “Rotation Accuracy Analysis of Aerostatic Spindle Considering Shaft’s Roundness and Cylindricity,” Applied Sciences, 11, 7912. doi:10.3390/app11177912
  • Zhang, G., Zheng, J., Yu, H., Chen, T., Zhang, K., and Dou, G. (2022), “Evaluation of the Influence of Shaft Shape Errors on the Rotation Accuracy of Aerostatic Spindle—Part 1: Modeling,” Electronics, 11, 1304. doi:10.3390/electronics11091304
  • Guenat, E. and Schiffmann, J. (2019), “Multi-Objective Optimization of Grooved Gas Journal Bearings for Robustness in Manufacturing Tolerances,” Tribology Transactions, 62, pp 1041–1050. doi:10.1080/10402004.2019.1642547
  • Feng, K., Li, W.-J., Wu, S.-B., and Liu, W.-H. (2017), “Thermohydrodynamic Analysis of Micro Spherical Spiral Groove Gas Bearings under Slip Flow and Surface Roughness Coupling Effect,” Microsystem Technologies, 23, pp 1779–1792. doi:10.1007/s00542-016-2934-z
  • Muzakkir, S. M., Lijesh, K. P., Hirani, H., and Thakre, G. D. (2015), “Effect of Cylindricity on the Tribological Performance of Heavily Loaded Slow-Speed Journal Bearing,” Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 229, pp 178–195. doi:10.1177/1350650114548053
  • Cui, H., Wang, Y., Yue, X., Huang, M., and Wang, W. (2017), “Effects of Manufacturing Errors on the Static Characteristics of Aerostatic Journal Bearings with Porous Restrictor,” Tribology International, 115, pp 246–260. doi:10.1016/j.triboint.2017.05.008
  • Constantinescu, V. N. and Galetuse, S. (1982), “Operating Characteristics of Journal Bearings in Turbulent Inertial Flow,” Journal of Lubrication Technology, 104, pp 173–179. doi:10.1115/1.3253177
  • Zirkelback, N. and San Andrés, L. (1998), “Finite Element Analysis of Herringbone Groove Journal Bearings: A Parametric Study,” Journal of Tribology, 120(2), pp 234–240.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.