432
Views
2
CrossRef citations to date
0
Altmetric
Articles

HABSat-1: assessing the feasibility of using CubeSats for the detection of cyanobacterial harmful algal blooms in inland lakes and reservoirs

ORCID Icon, , , , , , , , , , , & show all

References

  • Amin R, Zhou J, Gilerson A, Gross B, Moshary F, Ahmed S. 2009. Novel optical techniques for detecting and classifying toxic dinoflagellate Karenia brevis blooms using satellite imagery. Optics Express. 17(11):1–13.
  • Anderson DM, Hoagland P, Kaoru Y, White AW. 2000. Estimated annual economic impact from harmful aglal blooms (HABs) in the United States. Woods Hole (MA): Woods Hole Oceanographic Institution.
  • [APHA] American Public Health Association, [AWWA] American Water Works Association, [WEF] Water Environment Federation. 2012. Standard methods for examination of water and wastewater, 22nd ed. Washington (DC).
  • Augusto-Silva PB, Ogashawara I, Barbosa CCF, de Carvalho LAS, Jorge DSF, Fornari CI, Stech JL. 2014. Analysis of MERIS reflectance algorithms for estimating chlorophyll-a concentration in a Brazilian reservoir. Remote Sensing. 6: 11689–117077. doi:10.3390/rs61211689.
  • Backer LC. 2002. Cyanobacterial harmful algal blooms: developing a public health response. Lake Reserv Manage. 18(1):20–31. doi:10.1080/07438140209353926.
  • Beck RA, Liu H, Johansen R, Xu M, McGhan C, Black GT, Ma O, Tolbert C, Lekki J, Tokars R, et al. 2018. Adapting low-cost technology to CubSats for environmental monitoring and management: Harmful Algal Bloom Satellite-1 (HABSat-1). 32nd Annual AIAA/USU Conference on Small Satellites Proceedings. https://digitalcommons.usu.edu/smallsat/2018/all2018/486
  • Beck RA, Xu M, Zhan S, Liu H, Johansen RA, Tong S, Yang B, Shu S, Wu Q, Wang S, et al. 2017. Comparison of satellite reflectance algorithms for estimating phycocyanin values and cyanobacterial total biovolume in a temperate reservoir using coincident hyperspectral aircraft imagery and dense coincident surface observations. Remote Sens. 9:538. doi:10.3390/rs9060538.
  • Beck RA, Zhan S, Liu H, Tong S, Yang B, Xu M, Ye Z, Huang Y, Wu Q, Wang S, et al. 2016 Comparison of satellite reflectance algorithms for estimating chlorophyll-a in a temperate reservoir using coincident hyperspectral aircraft imagery and dense coincident surface observations. Remote Sens Environ. 178:15–30.
  • Broge NH, Mortensen JV. 2002. Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data. Remote Sens Environ. 81:45–57. doi:10.1016/S0034-4257(01)00332-7.
  • Christopher N. 2014. Algae, phytoplankton and chlorophyll. Fundamentals of environmental measurements. Fondriest Environmental, Inc. http://www.fondriest.com/environmental-measurements/parameters/water-quality/algae-phytoplankton-and-chlorophyll
  • Dekker AG. 1993. Detection of optical water quality parameters for eutrophic waters by high resolution remote sensing [thesis]. Amsterdam, The Netherlands: Vrije Universiteit.
  • Dodds WK, Bouska WW, Eitzmann JL, Pilger TJ, Pitts, KL, Riley AJ, Schlosser JT, Thornbrugh DJ. 2009. Eutrophication of U.S. freshwaters: analysis of potential economic damages. Environ Sci Technol. 43(1):12–19. doi:10.1021/es801217q.
  • Dokulil MT, Teubner K. 2000. Cyanobacterial dominance in lakes. Hydrobiologia. 438:1–12. doi:10.1023/A:1004155810302.
  • Graham JL. 2006. Harmful algal blooms. USGS Fact Sheet. 2006-3147. Reston (VA): United States Geologic Survey.
  • Hijmans, R. J. 2016. raster: Geographic data analysis and modeling. R package version 2.5–8. https://CRAN.R-project.org/package=raster
  • Hunter PD, Tyler AN, Willby NJ, Gilvear DJ. 2008. The spatial dynamics of vertical migration by Microcystis aeruginosa in a eutrophic shallow lake: a case study using high spatial resolution time-series airborne remote sensing. Limnol Oceanogr., 53:2391–2406. doi:10.4319/lo.2008.53.6.2391.
  • Johansen RA, Beck R, Nowosad J, Nietch C, Xu M, Shu S, Yang B, Liu H, Emery E, Reif M, et al. 2018. Evaluating the portability of satellite derived chlorophyll-a algorithms for temperate inland lakes using airborne hyperspectral imagery and dense surface observations. Harmful Algae. 76:35–46. doi:10.1016/j.hal.2018.05.001.
  • Johansen R, Nowosad J, Reif M, Emery E. 2018b. waterquality: Satellite derived water quality detection algorithms. R package version 0.2.2. https://rajohansen.github.io/waterquality. https://doi.org/10/5281/zenodo.1493487
  • Kahru M, Brown W. 1997. Monitoring algal blooms: new technologies for detecting large-scale environmental change. 43–61.
  • Koponen S, Pulliainen J, Kallio K, Hallikainen M. 2002. Lake water quality classification with airborne hyperspectral spectrometer and simulated MERIS data. Remote Sens Environ., 79:51–59. doi:10.1016/S0034-4257(01)00238-3.
  • Linkov I, Satterstrom FK, Loney D,Steevans JA. 2009. The impact of harmful algal blooms on USACE operations. ANSRP technical notes collection. ERDC/TN ansrp-09-1. Vicksburg (MS): Army Engineer Research and Development Center.
  • Lorenzen CJ. 1967. Determination of chlorophyll and phaeopigments: spectrophotometric equations. Limnol Oceanogr. 12:343–346. doi:10.4319/lo.1967.12.2.0343.
  • Mishra S, Mishra DR, Schluchter WM. 2009. A novel algorithm for predicting PC concentrations in cyanobacteria: a proximal hyperspectral remote sensing approach. Remote Sens. 1:758–775. doi:10.3390/rs1040758.
  • Mishra S, Mishra DR. 2014. A novel remote sensing algorithm to quantify phycocyanin in cyanobacterial algal blooms. Environ Res Lett. 9:114003. doi:10.1088/1748-9326/9/11/114003.
  • Mittenzwey KH, Ulrich S, Gitelson AA, Kondratiev KY. 1992. Determination of chlorophyll a of inland waters on the basis of spectral reflectance. Limnol Oceanogr., 37:147–149. doi:10.4319/lo.1992.37.1.0147.
  • Ogashawara I, Mishra DR, Mishra S, Curtarelli MP, Stech JL. 2013. A performance review of reflectance based algorithms for predicting phycocyanin concentrations in inland waters. Remote Sens. 5:4774–4798. doi:10.3390/rs5104774.
  • Picard R, Cook D. 1984. Cross-validation of regression models. J Am Stat Assoc. 79(387):575–583. doi:10.1080/01621459.1984.10478083.
  • R Core Team. 2017. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org
  • Randolph K, Wilson J, Tedesco L, Li L, Lani Pascual D, Soyeux E. 2008. Hyperspectral remote sensing of cyanobacteria in turbid productive water using optically active pigments, chlorophyll a and phycocyanin. Remote Sens Environ. 112:4009–4019. doi:10.1016/j.rse.2008.06.002.
  • Reif M. 2011. Remote sensing for inland water quality monitoring: a U.S. Army Corps of Engineers' perspective. Engineer Research and Development Center/Environmental Laboratory Technical Report (ERDC/EL TR)-11–13.
  • Schalles J, Yacobi Y. 2000. Remote detection and seasonal patterns of phycocyanin, carotenoid and chlorophyll-a pigments in eutrophic waters. Arch Hydrobiol Special Issue Advances in Limnology. 55:153–168.
  • Schlapfer D, Boerner A, Schaepman M. 1999. The potential of spectral resampling techniques for the simulation of APEX imagery based on AVIRIS data. NASA AVIRIS Workshop. 53:1–7.
  • Schlapfer D, Schaepman M, Strobl P. 2002. Impact of spatial resampling methods on the radiometric accuracy of airborne imaging spectrometer data. Paper presented at: 5th Airborne Remote Sensing Conference and Exhibition, Miami, FL.
  • Sentera. 2018. Sentera Quad Sensor. https://sentera.com/wp-content/uploads/2018/01/Gen2QuadSensor_Lit4062E_WEB.pdf
  • Simis SGH, Peters SWM, Gons HJ. 2005. Remote sensing of the cyanobacteria pigment phycocyanin in turbid inland water. Limnol Oceanogr. 50:237–245. doi:10.4319/lo.2005.50.1.0237.
  • Stone M. 1974. Cross-validatory choice and assessment of statistical predictions. J R Stat Soc. 36(1):111–147. doi:10.1111/j.2517-6161.1974.tb00994.x.
  • Stumpf RP, Davis TW, Wynne TT, Graham JL, Loftin KA, Johengen TH, Gossiaux D, Palladino D, Burtner A. 2016. Challenges for mapping cyanotoxin patterns from remote sensing of cyanobacteria. Harmful Algae. 54:160–173. doi:10.1016/j.hal.2016.01.005.
  • Stumpf RP, Wynne TT, Baker DB, Fahnenstiel GL. 2012 Interannual variability of cyanobacterial blooms in Lake Erie. PLoS ONE. 7:e42444. doi:10.1371/journal.pone.0042444.
  • US Environmental Protection Agency. 2012a. Cyanobacteria and cyanotoxins: information for drinking water systems. Washington (DC): EPA-810F11001.
  • US Environmental Protection Agency. 2012b. The national lakes assessment fact sheet. National Aquatic Resource Surveys. Washington (DC).
  • Wozniak M, Bradtke KM, Darecki M, Krezel A. 2016. Empirical model for phycocyanin concentration estimation as an indicator of cyanobacterial bloom in the optically complex coastal waters of the Baltic Sea. Remote Sens. 8:1–23.
  • Wynne TT, Stumpf RP, Tomlinson MC, Warner RA, Tester PA, Dyble J. 2008 Relating spectral shape to cyanobacterial blooms in the Laurentian Great Lakes. Int J Remote Sens. 29:3665–3672. doi:10.1080/01431160802007640.
  • YSI. 2003. ADV6600 environmental monitoring system: operations manual. https://www.ysi.com/File%20Library/Documents/Manuals%20for%20Discontinued%20Products/ADV6600.pdf
  • Zhao DZ, Xing XG, Liu YG, Yang JH, Wang L. 2010. The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. Int J Remote Sens. 31:39–48. doi:10.1080/01431160902882512.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.