3,616
Views
0
CrossRef citations to date
0
Altmetric
Articles

Cyanobacterial blooms in Ontario, Canada: continued increase in reports through the 21st century

ORCID Icon, ORCID Icon, & ORCID Icon

References

  • Amorim CA, Moura ADN. 2021. Ecological impacts of freshwater algal blooms on water quality, plankton biodiversity, structure and ecosystem functioning. Sci Total Environ. 758:143605. doi:10.1016/j.scitotenv.2020.143605.
  • Beaulieu M, Pick FR, Gregory-Eaves I. 2013. Nutrients and water temperature are significant predictors of cyanobacterial biomass in a 1147 lakes dataset. Limnol Oceanogr. 58(5):1736–1746. doi:10.4319/lo.2013.58.5.1736.
  • Binding CE, Greenberg TA, Bukata RP. 2011. Time series analysis of algal blooms in Lake of the Woods using the MERIS maximum chlorophyll index. J Plankton Res. 33(12):1847–1852. doi:10.1093/plankt/fbr079.
  • Brooks BW, Lazorchak JM, Howard MDA, Johnson M-VV, Morton SL, Perkins DAK, Reavie ED, Scott GI, Smith SS, Steevens JA. 2016. Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems? Environ Toxicol Chem. 35(1):6–13. doi:10.1002/etc.3220.
  • Callieri C, Bertoni R, Contesini M, Bertoni F. 2014. Lake level fluctuations boost toxic cyanobacterial “oligotrophic blooms”. PLoS One. 9(10):e10952. doi:10.1371/journal.pone.0109526.
  • Carey CC, Ibelings BW, Hoffmann EP, Hamilton DP, Brookes JD. 2012. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res. 46(5):1394–1407. doi:10.1016/j.watres.2011.12.016.
  • Chapra SC, Boehlert B, Fant C, Bierman VJ, Henderson J, David M, Mas DML, Rennels L, Jantarasami L, Martinich J, et al. 2017. Climate change impacts on harmful algal blooms in U.S. freshwaters: a screening-level assessment. Environ Sci Technol. 51(16):8933–8943. doi:10.1021/acs.est.7b01498.
  • Chorus I, Fastner J, Welker M. 2021. Cyanobacteria and cyanotoxins in a changing environment: concepts, controversies, challenges. Water. 13(18):2463. doi:10.3390/w13182463.
  • Chorus I, Welker M. 2021. Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management, 2nd edition. CRC Press, Boca Raton (FL), on behalf of the World Health Organization, Geneva, CH; p. 1–858.
  • Clark B, Hutchinson NJ. 1992. Measuring the trophic status of lakes: sampling protocols. Ontario Ministry of Environment and Energy. ISBN 0-7778-0387-9; p. 1–36.
  • Clark BJ, Paterson AM, Jeziorski A, Kelsey S. 2010. Assessing variability in total phosphorus measurements in Ontario lakes. Lake Reserv Manage. 26(1):63–72. doi:10.1080/07438141003712139.
  • Coffer MM, Schaeffer BA, Darling JA, Urquhart EA, Salls WB. 2020. Quantifying national and regional cyanobacterial occurrence in US lakes using satellite remote sensing. Ecol Indic. 111:105976. doi:10.1016/j.ecolind.2019.105976.
  • Cottingham KL, Ewing HA, Greer ML, Carey CC, Weathers KC. 2015. Cyanobacteria as biological drivers of lake nitrogen and phosphorus cycling. Ecosphere. 6(1):1–19. doi:10.1890/ES14-00174.1.
  • Cressey D. 2017. Climate change is making algal blooms worse. Nature. doi:10.1038/nature.2017.21884.
  • Ding S, Chen M, Gong M, Fan X, Qin B, Xu H, Gao S, Jin Z, Tsang DCW, Zhang C. 2018. Internal phosphorus loading from sediments causes seasonal nitrogen limitation for harmful algal blooms. Sci Total Environ. 625:872–884. doi:10.1016/j.scitotenv.2017.12.348.
  • Dinno A. 2017. Dunn.test: Dunn’s test of multiple comparisons using rank sums. R package version 1.3.5; [cited 1 May 2022]. Available from https://CRAN.R-project.org/package=dunn.test.
  • Downing JA, Watson SB, McCauley E. 2001. Predicting cyanobacteria dominance in lakes. Can J Fish Aquat Sci. 58(10):1905–1908. doi:10.1139/f01-143.
  • Dunn OJ. 1964. Multiple comparisons using rank sums. Technometrics. 6(3):241–252. doi:10.1080/00401706.1964.10490181.
  • Eimers MC, Watmough SA, Paterson AM, Dillon PJ, Yao H. 2009. Long-term declines in phosphorus export from forested catchments in south-central Ontario. Can J Fish Aquat Sci. 66(10):1682–1692. doi:10.1139/F09-101.
  • Erratt KJ, Creed IF, Trick CG. 2022. Harmonizing science and management options to reduce risks of cyanobacteria. Harmful Algae. 116:102264. doi:10.1016/j.hal.2022.102264.
  • Favot EJ, Rühland KM, DeSellas AM, Ingram R, Paterson AM, Smol JP. 2019. Climate variability promotes unprecedented cyanobacterial blooms in a remote, oligotrophic Ontario lake: evidence from paleolimnology. J Paleolimnol. 62(1):31–52. doi:10.1007/s10933-019-00074-4.
  • Freeman EC, Creed IF, Jones B, Bergström A. 2020. Global changes may be promoting a rise in select cyanobacteria in nutrient-poor northern lakes. Glob Chang Biol. 26(9):4966–4987. doi:10.1111/gcb.15189.
  • Futter MN. 2003. Patterns and trends in southern Ontario lake ice phenology. Environ Monit Assess. 88(1-3):431–444. doi:10.1023/a:1025549913965.
  • Gaskill JA, Woller-Skar MM. 2018. Do invasive dreissenid mussels influence spatial and temporal patterns of toxic Microcystis aeruginosa in a low-nutrient Michigan lake? Lake Reservoir Manage. 34:244–257.
  • Gilbert PM. 2020. Harmful algae at the complex nexus of eutrophication and climate change. Harmful Algae 91:101583.
  • Hallegraeff GM, Anderson DM, Belin C, Bottein MYD, Bresnan E, Chinain M, Enevoldsen H, Iwataki M, Karlson B, McKenzie CH, et al. 2021. Perceived global increase in algal blooms is attributable to intensified monitoring and emerging bloom impacts. Commun Earth Environ. 2(1):117. doi:10.1038/s43247-021-00178-8.
  • Heisler J, Glibert P, Burkholder J, Anderson D, Cochlan W, Dennison W, Gobler C, Dortch Q, Heil C, Humphries E, et al. 2008. Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae. 8(1):3–13. doi:10.1016/j.hal.2008.08.006.
  • Ho JC, Michalak AM. 2015. Challenges in tracking harmful algal blooms: a synthesis of evidence from Lake Erie. J Great Lakes Res. 41(2):317–325. doi:10.1016/j.jglr.2015.01.001.
  • Ho JC, Michalak AM, Pahlevan N. 2019. Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature. 574(7780):667–670. doi:10.1038/s41586-019-1648-7.
  • Hou X, Feng L, Dai Y, Hu C, Gibson L, Tang J, Lee Z, Wang Y, Cai X, Liu J, et al. 2022. Global mapping reveals increase in lacustrine algal blooms over the past decade. Nat Geosci. 15(2):130–134. doi:10.1038/s41561-021-00887-x.
  • Ingram RG, Girard RE, Paterson AM, Sutey P, Evans D, Xu R, Rusak J, Masters C. 2019. Dorset Environmental Science Centre: lake sampling methods. Ministry of the Environment, Conservation and Parks, technical report. p. 1–107.
  • Isles PDF, Giles CD, Gearhart TA, Yaoyang X, Druschel GK, Schroth AW. 2015. Dynamic internal drivers of a historically severe cyanobacteria bloom in Lake Champlain revealed through comprehensive monitoring. J Great Lakes Res. 41(3):818–829. doi:10.1016/j.jglr.2015.06.006.
  • Jane SF, Hansen GJA, Kraemer BM, Leavitt PR, Mincer JL, North RL, Pilla RM, Stetler JT, Williamson CE, Woolway RI, Arvola L, et al. 2021. Widespread deoxygenation of temperate lakes. Nature. 594(7861):66–70. doi:10.1038/s41586-021-03550-y.
  • Jöhnk KD, Huisman J, Sharples J, Sommeijer B, Visser PM, Stroom JM. 2008. Summer heatwaves promote blooms of harmful cyanobacteria. Glob Chang Biol. 14(3):495–512. doi:10.1111/j.1365-2486.2007.01510.x.
  • Knoll LB, Sarnelle O, Hamilton SK, Kissman CEH, Wilson AE, Rose JB, Morgan MR. 2008. Invasive zebra mussels (Dreissena polymorpha) increase cyanobacterial toxin concentrations in low-nutrient lakes. Can J Fish Aquat Sci. 65(3):448–455. doi:10.1139/f07-181.
  • Korosi JB, Burke SM, Thienpont JR, Smol JP. 2012. Anomalous rise in algal production linked to lakewater calcium decline through food web interactions. Proc Biol Sci. 279(1731):1210–1217. doi:10.1098/rspb.2011.1411.
  • Kruskal WH, Wallis A. 1952. Use of ranks in one-criterion variance analysis. J Am Stat Assoc. 47(260):583–621. doi:10.1080/01621459.1952.10483441.
  • Krztoń W, Kosiba J, Pociecha A, Wilk-Woźniak E. 2019. The effect of cyanobacterial blooms on bio- and functional diversity of zooplankton communities. Biodivers Conserv. 28(7):1815–1835. doi:10.1007/s10531-019-01758-z.
  • Larsen ML, Baulch HM, Schiff SL, Simon DF, Sauvé S, Venkiteswaran JJ. 2020. Extreme rainfall drives early onset cyanobacterial bloom. FACETS. 5(1):899–920. doi:10.1139/facets-2020-0022.
  • LeBlanc S, Pick FR, Hamilton PB. 2008. Fall cyanobacterial blooms in oligotrophic-to-mesotrophic temperate lakes and the role of climate change. Verh Int Verein Limnol. 30(1):90–94. doi:10.1080/03680770.2008.11902091.
  • Lürling M, Mendes e Mello M, van Oosterhout F, de Senerpont Domis L, Marinho MM. 2018. Response of natural cyanobacteria and algae assemblages to a nutrient pulse and elevated temperature. Front Microbiol. 9:1851.
  • Masters C, Cederwall J, Sutey P. 2017. The determination of total phosphorus in water by colourimetry. Ontario Ministry of the Environment, Conservation and Parks, Laboratory Services Branch, DOP-E3036; p. 1–49.
  • McLeod AI. 2011. Kendall: Kendall rank correlation and Mann-Kendall trend test. R package version 2.2; [cited 1 May 2022]. Available from https://CRAN.R-project.org/package=Kendall.
  • Millar EE, Hazell EC, Melles SJ. 2019. The “cottage effect” in citizen science? Spatial bias in aquatic monitoring programs. Int J Geogr Inf Sci. 33(8):1612–1632. doi:10.1080/13658816.2018.1423686.
  • Mishra DR, Kumar A, Ramaswamy L, Boddula VK, Das MC, Page BP, Weber SJ. 2020. CyanoTRACKER: a cloud-based integrated multi-platform architecture for global observation of cyanobacterial harmful algal blooms. Harmful Algae. 96:101828. doi:10.1016/j.hal.2020.101828.
  • Molot LA, Schiff SL, Venkiteswaran JJ, Baulch HM, Higgins SN, Zastepa A, Verschoor MJ, Walters D. 2021. Low sediment redox promotes cyanobacteria blooms across a trophic range: implications for management. Lake Reserv Manage. 37:120–142. doi:10.1080/10402381.2020.1854400.
  • Nürnberg GK, Molot LA, O’Connor E, Jarjanazi H, Winter J, Young J. 2013. Evidence for internal phosphorus loading, hypoxia and effects on phytoplankton in partially polymictic Lake Simcoe, Ontario. J Great Lakes Res. 39(2):259–270. doi:10.1016/j.jglr.2013.03.016.
  • O’Reilly CM, Sharma S, Gray DK, Hampton SE, Read JS, Rowley RJ, Schneider P, Lenters JD, McIntyre PB, Kraemer BM, Weyhenmeyer GA, et al. 2015. Rapid and highly variable warming of lake surface waters around the globe. Geophys Res Lett. 42:10773–10781.
  • Ontario Biodiversity Council. 2015. State of Ontario’s Biodiversity [web application]. Ontario Biodiversity Council, Peterborough, Ontario; [cited 19 May 2022]. Available from https://sobr.ca/indicator/water-quality-inland-lakes/.
  • Ontario Geological Survey. 2011. 1:250 000 scale bedrock geology of Ontario. Ontario Geological Survey, Miscellaneous Release: Data 126-Revision 1.
  • Ontario Hydro Network – Waterbody [computer file]. 2021. Peterborough, ON: Ontario Ministry of Natural Resources and Forestry; [cited 1 Feb 2022]. Available from http://geohub.lio.gov.on.ca.
  • Ontario Ministry of the Environment. 2010. Lakeshore capacity assessment handbook: protecting water quality in inland lakes on Ontario’s Precambrian shield Appendix A: rationale for a revised phosphorus criterion for Precambrian shield lakes in Ontario. Toronto, Ontario; [cited 1 May 2022]. Available from https://www.ontario.ca/page/lakeshore-capacity-assessment-handbook-protecting-water-quality-inland-lakes-ontarios-precambrian.
  • Ontario Ministry of Environment and Energy. 1994. Water management: policies, guidelines, provincial water quality objectives. 61 pp.
  • Ontario Ministry of the Environment, Conservation and Parks. 2022a. Data Catalogue: Ontario Lake Partner; [cited 1 Feb 2022]. Available from https://data.ontario.ca/dataset/ontario-lake-partner.
  • Ontario Ministry of the Environment, Conservation and Parks. 2022b. Map: Lake Partner; [cited 1 Jul 2022]. Available from https://www.ontario.ca/page/map-lake-partner.
  • Ontario Road Network [computer file]. 2018. Peterborough, ON: Ontario Ministry of Natural Resources and Forestry; [cited 1 Feb 2022]. Available from http://geohub.lio.gov.on.ca.
  • Paerl HW, Hall NS, Calandrino ES. 2011. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci Total Environ. 409(10):1739–1745. doi:10.1016/j.scitotenv.2011.02.001.
  • Paerl HW, Huisman J. 2008. Blooms like it hot. Science. 320(5872):57–58. doi:10.1126/science.1155398.
  • Paerl HW, Paul VJ. 2012. Climate change: links to global expansion of harmful cyanobacteria. Water Res. 46(5):1349–1363. doi:10.1016/j.watres.2011.08.002.
  • Palmer ME, Yan ND, Paterson AM, Girard RE. 2011. Water quality changes in south-central Ontario lakes and the role of local factors in regulating lake response to regional stressors. Can J Fish Aquat Sci. 68(6):1038–1050. doi:10.1139/f2011-041.
  • Paterson AM, Keller B, Jones C, Rühland KM, Winter J. 2014. An exploratory survey of water chemistry and plankton communities in lakes near the Sutton River, Hudson Bay Lowlands, Ontario, Canada. Arct, Antarct Alp Res. 46(1):121–138. doi:10.1657/1938-4246-46.1.121.
  • Paterson AM, Rühland KM, Anstey CV, Smol JP. 2017. Climate as a driver of increasing algal production in Lake of the Woods, Ontario, Canada. Lake Reserv Manag. 33:1–12.
  • Pick FR. 2016. Blooming algae: a Canadian perspective on the rise of toxic cyanobacteria. Can J Fish Aquat Sci. 73(7):1149–1158. doi:10.1139/cjfas-2015-0470.
  • Posch T, Koster O, Salcher MM, Pernthaler J. 2012. Harmful filamentous cyanobacteria favoured by reduced water turnover with lake warming. Nature Clim Change. 2(11):809–813. doi:10.1038/nclimate1581.
  • Pouria S, de Andrade A, Barbosa J, Cavalcanti RL, Barreto VTS, Ward CJ, Preiser W, Poon GK, Neild GH, Codd GA. 1998. Fatal microcystin intoxication in haemodialysis unit in Caruaru, Brazil. Lancet. 352(9121):21–26. doi:10.1016/S0140-6736(97)12285-1.
  • R Core Team. 2020. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; [cited 1 Jan 2022]. Available from https://www.R-project.org/.
  • Reinl KL, Brookes JD, Carey CC, Harris TD, Ibelings BW, Morales-Williams AM, De Senerpont Domis LN, Atkins KS, Isles PDF, Mesman JP, et al. 2021. Cyanobacterial blooms in oligotrophic lakes: shifting the high-nutrient paradigm. Freshw Biol. 66(9):1846–1859. doi:10.1111/fwb.13791.
  • Reinl KL, Sterner RW, Moraska Lafrancois B, Brovold S. 2020. Fluvial seeding of cyanobacterial blooms in oligotrophic Lake Superior. Harmful Algae. 100:101941. doi:10.1016/j.hal.2020.101941.
  • Salmaso N, Buzzi F, Capelli C, Shams S, Cerasino L. 2015. Expansion of bloom-forming Dolichospermum lemmermannii (Nostocales, Cyanobacteria) to the deep lakes south of the Alps: colonization patterns, driving forces and implications for water use. Harmful Algae. 50:76–87. doi:10.1016/j.hal.2015.09.008.
  • Schindler DW, Carpenter SR, Chapra SC, Hecky RE, Orihel DM. 2016. Reducing phosphorus to curb lake eutrophication is a success. Environ Sci Technol. 50(17):8923–8929. doi:10.1021/acs.est.6b02204.
  • Sharma S, Blagrave K, Magnuson JJ, O’Reilly CM, Oliver S, Batt RD, Magee MR, Straile D, Weyhenmeyer GA, Winslow L, et al. 2019. Widespread loss of lake ice around the Northern Hemisphere in a warming world. Nat Clim Chang. 9(3):227–231. doi:10.1038/s41558-018-0393-5.
  • Sivarajah B, Simmatis B, Favot EJ, Palmer MJ, Smol JP. 2021. Eutrophication and climatic changes lead to unprecedented blooms in a Canadian sub-arctic landscape. Harmful Algae. 105:102036. doi:10.1016/j.hal.2021.102036.
  • Smayda TJ. 1997. What is a bloom? A commentary. Limnol Oceanogr. 42(5part2):1132–1136. doi:10.4319/lo.1997.42.5_part_2.1132.
  • Smith VH, Schindler DW. 2009. Eutrophication science: where do we go from here? Trends Ecol Evol. 24(4):201–207. doi:10.1016/j.tree.2008.11.009.
  • Smucker NJ, Beaulieu JJ, Nietch CT, Young JL. 2021. Increasingly severe cyanobacterial blooms and deep water hypoxia coincide with warming water temperatures in reservoirs. Glob Chang Biol. 27(11):2507–2519. doi:10.1111/gcb.15618.
  • Statistics Canada. 2017. 2016 Census: Census Profile Downloads (Tables: 98-401-X).
  • Steffensen DA. 2008. Economic cost of cyanobacterial blooms. In: Hudnell HK, editor. Cyanobacterial harmful algal blooms: state of the science and research needs. New York (NY): Springer; p. 855–865.
  • Sterner RW, Reinl KL, Moraska Lafrancois B, Brovold S, Miller TR. 2020. A first assessment of cyanobacterial blooms in oligotrophic Lake Superior. Limnol Oceanogr. 65(12):2984–2998. doi:10.1002/lno.11569.
  • Svirčev Z, Lalić D, Bojadžija Savić G, Tokodi N, Drobac Backović D, Chen L, Meriluoto J, Codd GA. 2019. Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. Arch Toxicol. 93(9):2429–2481. doi:10.1007/s00204-019-02524-4.
  • Taranu ZE, Gregory-Eaves I, Leavitt PR, Bunting L, Buchaca T, Catalan J, Domaizon I, Guilizzoni P, Lami A, McGowan S, Moorhouse H, et al. 2015. Acceleration of cyanobacterial dominance in north temperate-subarctic lakes during the Anthropocene. Ecol Lett. 18(4):375–384. doi:10.1111/ele.12420.
  • Utermöhl H. 1931. Neue Wege in der quantitativen Erfassung des Planktons. (Mit besondere Beriicksichtigung des Ultraplanktons). Verh Int Verein Theor Angew Limnol. 5(2):567–596. doi:10.1080/03680770.1931.11898492.
  • Vanderploeg HA, Liebig JR, Carmichael WW, Agy MA, Johengen TH, Fahnenstiel GL, Nalepa TF. 2001. Zebra mussel (Dreissena polymorpha) selective filtration promoted toxic Microcystis blooms in Saginaw Bay (Lake Huron) and Lake Erie. Can J Fish Aquat Sci. 58(6):1208–1221. doi:10.1139/f01-066.
  • Vuorio K, Järvinen M, Kotamäki N. 2020. Phosphorus thresholds for bloom-forming cyanobacterial taxa in boreal lakes. Hydrobiologia. 847(21):4389–4400. doi:10.1007/s10750-019-04161-5.
  • Wilcoxon F. 1945. Individual comparisons by ranking methods. Biometrics. 1(6):80–83. doi:10.2307/3001968.
  • Wilkinson GM, Walter JA, Buelo CD, Pace ML. 2022. No evidence of widespread algal bloom intensification in hundreds of lakes. Frontiers Ecol Environ. 20(1):16–21. doi:10.1002/fee.2421.
  • Winter JG, DeSellas AM, Fletcher R, Heintsch L, Morley A, Nakamoto L, Utsumi K. 2011. Algal blooms in Ontario, Canada: increases in reports since 1994. Lake Reserv Manage. 27(2):107–114. doi:10.1080/07438141.2011.557765.
  • Woolway RI, Kraemer BM, Lenters JD, Merchant CJ, O’Reilly CM, Sharma S. 2020. Global lake responses to climate change. Nat Rev Earth Environ. 1(8):388–403. doi:10.1038/s43017-020-0067-5.
  • Woolway RI, Merchant CJ, Van Den Hoek J, Azorin-Molina C, Nõges P, Laas A, Mackay EB, Jones ID. 2019. Northern hemisphere atmospheric stilling accelerates lake thermal responses to a warming world. Geophys Res Lett. 46(21):11983–11992. doi:10.1029/2019GL082752.
  • Woolway RI, Sharma S, Smol JP. 2022. Lakes in hot water: the impacts of a changing climate on aquatic ecosystems. BioScience. 72(11):1050–1061. doi:10.1093/biosci/biac052.
  • Woolway RI, Sharma S, Weyhenmeyer GA, Debolskiy A, Golub M, Mercado-Bettín D, Perroud M, Stepanenko V, Tan Z, Grant L, et al. 2021. Phenological shifts in lake stratification under climate change. Nat Comm. 12:2318.
  • Xiaochuang L, Dreher TW, Renhui L. 2016. An overview of diversity, occurrence, genetics and toxin production of bloom-forming Dolichospermum (Anabaena) species. Harmful Algae. 54:54–68.
  • Zhang M, Yang Z, Yu Y, Shi X. 2020. Interannual and seasonal shift between Microcystis and Dolichospermum: a 7-year investigation in Lake Chaohu, China. Water 12(7):1978. doi:10.3390/w12071978.