115
Views
0
CrossRef citations to date
0
Altmetric
Articles

The Florida experience: time for a revitalized and restructured Clean Lakes Program

ORCID Icon, &

References

  • Amrhein V, Greenland S, McShane B. 2019. Retire statistical significance – comment. Nature 567(7748):305–307. doi: 10.1038/d41586-019-00857-9.
  • Amundson R, Berhe AA, Hopmans JW, Olson C, Sztein AE, Sparks DL. 2015. Soil and human security in the 21st century. Science 348(6235):1261071. doi: 10.1126/science.1261071.
  • Anders PJ, Ashley KI. 2007. The Clear-water Paradox of aquatic ecosystem restoration. Fisheries 32(3):125–128. doi: 10.1577/1548-8446(2007)32[125:TWPOAE]2.0.CO;2
  • Bachmann RW, Bigham DL, Hoyer MV, Canfield DE Jr. 2012a. Factors determining the distributions of total phosphorus, to­tal nitrogen and chlorophyll a in Florida lakes. Lake Reserv Manage. 28(1):10–26. doi: 10.1080/07438141.2011.646458.
  • Bachmann RW, Bigham DL, Hoyer MV, Canfield DE Jr. 2012b. Phosphorus, nitrogen, and the designated uses of Florida lakes. Lake Reserv Manage. 28(1):46–58. doi: 10.1080/07438141.2011.650835.
  • Bachmann RW, Bigham DL, Hoyer MV, Canfield DE. 2012c. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reserv Manage. 28(1):84–91. doi: 10.1080/07438141.2012.667053.
  • Bachmann RW, Horsburgh CA, Hoyer MV, Mataraza LK, Canfield DE Jr. 2002. Relations between trophic state in­dicators and plant biomass in Florida lakes. Hydrobiol. 470(1/3):219–234. doi: 10.1023/A:1015660922494.
  • Bachmann RW, Hoyer MV, Canfield DE Jr. 2013. The extent that natural lakes in the United States of America have been changed by cultural eutrophication. Limnol Oceanogr. 58(3):945–950. doi: 10.4319/lo.2013.58.3.0945.
  • Bachmann RW, Hoyer MV, Canfield DE. 2014. Response to comments: quantification of the extent of cultural eutrophication of natural lakes in the United States. Limnol Oceanogr. 59(6):2231–2239. doi: 10.4319/lo.2014.59.6.2231.
  • Bachmann R, Hoyer M, Canfield D. 2018. Possible sediment mixing and the disparity between field measurements and paleolimnological inferences in shallow Iowa lakes in the Midwestern United States. GeoSciences 8(2):40. doi: 10.3390/geosciences8020040.
  • Bachmann RW, Hoyer MV, Croteau AC, Canfield DE. 2017. Factors related to Secchi depths and their stability over time as determined from a probability sample of US lakes. Environ Monit Assess. 189(5):206. doi: 10.1007/s10661-017-5911-9.
  • Bachmann RW, Hoyer MV, Fernandez C, Canfield DE. 2003. An alternative to proposed phosphorus TMDLs for the management of Lake Okeechobee. Lake Reserv Manage.19(3):251–264. doi: 10.1080/07438140309354090.
  • Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Statistical Soc. 57(1):289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x.
  • Bigham DL. 2012. Analyses of temporal changes in trophic state variables in Florida lakes. [dissertation]. [Gainesville (FL)]: University of Florida.
  • Bigham Stephens DL, Carlson RE, Horsburgh CA, Hoyer MV, Bachmann RW, Canfield DE. 2015. Regional distribution of Secchi disk transparency in waters of the United States. Lake Reservoir Manage. 31(1):55–63. doi: 10.1080/10402381.2014.1001539.
  • Bonvechio KI, Bonvechio TF. 2006. Relationship between habitat and sport fish populations over a 20-year period at West Lake Tohopekaliga, Florida. North Amer J Fish Manage. 26(1):124–133. doi: 10.1577/M04-191.1.
  • Bryhn AC, Dimberg PH. 2011. An operational definition of a statistically meaningful trend. PLos One. 6(4):e19241. doi: 10.1371/journal.prone.0019241.
  • Camacho RA, Martin JL, Wool T, Singh VP. 2018. A framework for uncertainty and risk analysis in total maximum daily load applications. Environ Model Softw. 101:218–235. PMID: 31396011; PMCID: PMC6687321. doi: 10.1016/j.envsoft.2017.12.007.
  • Canfield DE Jr., Bachmann RW. 1981. Prediction of total phosphorus concentrations, chlorophyll a, and Secchi depths in natural and artificial lakes. Can J Fish Aquat Sci. 38(4):414–423. doi: 10.1139/f81-058.
  • Canfield DE Jr., Bachmann RW, Hoyer MV. 2018. Long-term chlorophyll trends in Florida lakes. J Aquat Plant Manage. 56:47–56.
  • Canfield DE Jr., Bachmann RW, Hoyer MV. 2021. Restoration of Lake Okeechobee: mission impossible. Lake Reserv Manage. 37(1):95–111. doi: 10.1080/10402381.2020.1839607.
  • Canfield DE Jr., Bachmann RW, Hoyer MV. 2023. Socio-political influences affecting the management & restoration of Okeechobeeland: Lake Okeechobee and the Greater Everglades. Florida LAKEWATCH, School Forest, Fisheries and Geomatics Sciences, UF/IFAS. Gainesville Florida. Available from https://lakewatch.ifas.ufl.edu/media/lake­watchifasufledu/extension/bibliography/Socio-politial-influences-Okeechobeeland-copy.pdf
  • Canfield DE Jr., Bachmann RW, Stephens DB, Hoyer MV, Bacon L, Williams S, Scott M. 2016a. Monitoring by cit­izen scientists demonstrates water clarity of Maine (USA) lakes is stable, not declining, due to cultural eutrophica­tion. IW 6(1):11–27. doi: 10.5268/IW-6.1.864.
  • Canfield DE Jr., Hoyer MV. 1988. Regional geology and the chemical and trophic state characteristics of Florida lakes. Lake Reserv Manage. 4(1):21–31. doi: 10.1080/07438148809354375.
  • Canfield DE Jr., Hoyer MV, Bachmann RW, Bigham Stephens D, Ruiz-Bernard I. 2016b. Water quality changes at an Outstanding Florida Water: influence of stochastic events and climate variability. Lake Reserv Manage. 32(3):297–313. doi: 10.1080/10402381.2016.1193576.
  • Canfield SL, Canfield DE. 1994. The TEAM approach, “Together for Environmental Assessment and Management”: a process for developing effective lake management plans or water resource policy. Lake Reserv Manage. 10(2):203–212. doi: 10.1080/07438149409354191.
  • Chamberlin TC. 1965. The method of multiple working hypotheses. Science 148(3671):754–759. doi: 10.1126/science.148.3671.754.
  • Cooke GD. 2005. Ecosystem rehabilitation. Lake Reserv Manage. 21(2):218–221. doi: 10.1080/07438140509354431.
  • Cooke GD. 2007. History of eutrophic lake rehabilitation in North America with arguments for including social sciences in the paradigm. Lake Reserv Manage. 23(4):323–329. doi: 10.1080/07438140709354021.
  • Copeland C. 2012. Clean Water Act and pollutant total maximum daily loads (TMDLs). Congressional Res Serv R42752. Washington, DC. Available from www.crs.gov.
  • Davenport TE. 1999. The federal clean lakes program. Wat Sci Tech. 39(3):149–156. doi: 10.2166/wst.1999.0156.
  • Degood K. 2020. A call to action on combating nonpoint source and stormwater pollution. October 27, 2020. Washington (DC): Center for American Progress.
  • Dillon PJ, Rigler FH. 1974. The phosphorus-chlorophyll relationships in lakes. Limnol Oceanogr. 19(5):767–773. doi: 10.4319/lo.1974.19.5.0767.
  • Duarte CM, Conley DJ, Carstensen J, Sánchez-Camacho M. 2009. Return to Neverland: shifting baselines affect eutrophication restoration targets. Estuaries Coasts. 32(1):29–36. doi: 10.1007/s12237-008-9111-2.
  • Duda AM, Johnson RJ. 1984. Lakes are losing the battle in clean water programs. J Wat Pol Contr Fed. 56:815–822. Available from https://www.jstor.org/stable/25042357
  • Enfield DB, Mestas-Nun ∼ Ez AM, Trimble PJ. 2001. The Atlantic multidecadal oscillation and its relation to rain- fall and river flows in the continental U.S. Geophys Res Lett. 28(10):2077–2080. doi: 10.1029/2000GL012745.
  • Engstrom DR, Schottler SP, Leavitt PR, Havens KE. 2006. A re-evaluation of the cultural eutrophication of Lake Okeechobee, Florida using multiproxy sediment records. Ecol Appl. 16(3):1194–1206. doi: 10.1890/1051-0761(2006)016[1194:AROTCE.2.0.CO;2]
  • Enviro.BLR.com. 2014. TMDLs-much effort, limited benefits. Compliance Tools for Environmental Professionals; [cited 30 Mar 2023]. Available from https://enviro.blr.com/.
  • [EIP] Environmental Integrity Project. 2022. The Clean Water Act at 50: promises half kept at the half-century mark; [cited 6 Apr 2022]. Available from https://environmentalintegrity.org/wp-content/uploads/2022/03/Revised-CWA-report-3.29.22.pdf.
  • Faridmarandi S, Khare YP, Naja GM. 2021. Long-term regional nutrient contributions and in-lake water quality trends for Lake Okeechobee. Lake Reserv Manage. 37(1):77–94. doi: 10.1080/10402381.2020.1809036.
  • Federal Register. 2010. 40 CFR Part 131Water Quality Standards for the State of Florida’s Lakes and Flowing Waters; Proposed Rule. Federal Register Proposed Rules. Tuesday75(16.r), January 26, 2010.
  • Federico A, Dickson K, Kratzer C, Davis F. 1981. Lake Okeechobee water quality studies and eutrophication assessment. Technical publication 81-2. West Palm Beach (FL): South Florida Water Management District.
  • Feliciano DV. 1979. EPA’s Clean Lakes Program: a return for the money. Wat Pollut Contr Fed. 51:227–232.
  • Feng C, Wang H, Lu N, Chen T, He H, Lu Y, Tu XM. 2014. Log-transformation and its implications for data analysis. Shanghai Arch Psychiatry. 26(2):105–109. doi: 10.3969/j.issn.1002-0829.2014.02.009.
  • Flaig EG, Havens KE. 1995. Historical trends in the Lake Okeechobee ecosystem I. Land use and nutrient loading. Arch Hydrobiol. 107:1–24.
  • [FBC] Florida Board of Conservation 1969. Florida Lakes. Part 3. Gazateer. Div. Water Resour. Tallahassee (FL).
  • [FDEP] Florida Department of Environmental Protection. 2001. Total maximum daily load for total phosphorus Lake Okeechobee, Florida. Tallahassee (FL).
  • [FDEP] Florida Department of Environmental Protection. 2008. 2008 Integrated Water Quality Assessment for Florida: Sections 303(d), 305(b), and 314 Report and Listing Update. Tallahassee (FL): Division of Environmental Assessment and Restoration.
  • [FDEP] Florida Department of Environmental Protection. 2013. Implementation of Florida’s numeric nutrient standards. Tallahassee (FL): Florida Department of Environmental Protection.
  • [FDEP] Florida Department of Environmental Protection. 2020. 2020 Integrated Water Quality Assessment for Florida: Sections 303(d), 305(b), and 314 Report and Listing Update. Tallahassee (FL): Division of Environmental Assessment and Restoration.
  • [FDEP] Florida Department of Environmental Protection. 2022. 2022 Integrated Water Quality Assessment for Florida: Sections 303(d), 305(b), and 314 Report and Listing Update. Tallahassee (FL): Division of Environmental Assessment and Restoration.
  • Florida LAKEWATCH. 2022. Lake management plans; [cited 9 Sep 2022]. Available from https://lakewatch.ifas.ufl.edu/extension/lake-management-plans/
  • Frost JR, Phlips EJ, Fulton RS, IIISchelske CL, Kenney W, Cichra M. 2008. Temporal trends of trophic state variable in a shallow hypereutrophic subtropical lake, Lake Griffin, Florida. Fal 172(4):263–271. doi: 10.1127/1863-9135/2008/0172-0263.
  • Fulton III, Rs. Schluter C, Keller TA, Nagid S, Godwin W. 2004. Pollutant load reduction goals for seven major lakes in the Upper Ocklawaha River Basin Technical Publication SJ2004-5. Palatka, (FL): St. Johns River Water Management District.
  • Garn HS, Elder JF, Robertson DM. 2003. Why study lakes? An overview of USGS lake studies in Wisconsin. Fact Sheet 063–03. Lake Studies Team. Wisconsin District. US Geological Survey.
  • Gilbert D. 2013. Nutrient TMDL for Lake Holden (WBID 3168H) Final TMDL Report. Water Quality Evaluation and TMDL Program. Tallahassee (FL): Division of Environmental Assessment and Restoration. Florida Department of Environmental Protection.
  • Griffith GE, Canfield DE, Jr, Horsburgh CA, Omernik JM. 1997. Lake Regions of Florida. Corvallis (OR): Environmental Protection Agency; National Health and Environmental Effects Research Laboratory; EPA/R-97/127. U.S. Available from http://www.epa.gov/wed/pages/ecoregions/fl eco.htm
  • Harper HH. 2004. Lake Holden revised hydrologic/nutrient budget and management plan. Final report. Orlando (FL): Professional Engineering Consultants, Environmental Research & Design, Inc.
  • Harvey, R. and K. Havens. 1999. Lake Okeechobee Action Plan. Report to the South Florida Restoration Working Group, West Palm Beach, FL.
  • Havens KE, James RT. 2005. The phosphorus mass balance of Lake Okeechobee, Florida: implications for eutrophication management. Lake Reserv Manage. 21(2):139–148. doi: 10.1080/07438140509354423.
  • Heiskary S, Egge L. 2016. A review of Secchi transparency trends in Minnesota lakes. Minneapolis, (MN): Minnesota Pollution Control Agency. doi: 10.13140/RG.2.1.4385.9440.
  • Hirsch RM, Slack JR. 1984. Non-parametric trend test for seasonal data with serial dependence. Water Resour Res. 20(6):727–732. doi: 10.1029/WR020i006p00727.
  • Hoyer MV, Bigham DL, Bachmann RW, Canfield DE Jr. 2014. Florida LAKEWATCH: citizen scientists protecting Florida’s aquatic systems. Florida Sci. 77:184–197.
  • Hoyer MV, Canfield DE Jr. 1994. Bird abundance and species richness on Florida lakes: influence of trophic status, lake morphology, and aquatic macrophytes. Hydrobiol. 297/280:107–119.
  • Hoyer MV, Canfield DE. 2022. A Limnological Yardstick based on phosphorus limitation. Lake Reserv Manage. 38(2):109–125. doi: 10.1080/10402381.2022.2045400.
  • Hunt RJ, Greb SR, Graczyk DJ. 2006. Evaluating the effects of nearshore development on Wisconsin Lakes. U.S. Geological Survey Fact Sheet 2006–3. Washington (DC): U.S. Department of the Interior.
  • Huser BJ, Futter M, Lee JT, Perniel M. 2016. In-lake measures for phosphorus control: The most feasible and cost-effective solution for long-term management of water quality in urban lakes. Water Res. 97:142–152. doi: 10.1016/j.watres.2015.07.036.
  • James RT, Chimney MJ, Sharfstein B, Engstrom DR, Schottler SP, East T, Jin K-R. 2008. Hurricane effects on a shallow lake ecosystem, Lake Okeechobee, Florida (USA). Fal 172(4):273–287. doi: 10.1127/1863-9135/2008/0172-0273.
  • James RT, Pollman CD. 2011. Sediment and nutrient management solutions to improve the water quality of Lake Okeechobee. Lake Reserv Manag. 27(1):28–40. doi: 10.1080/07438141.2010.536618.
  • Jones JR, Bachmann RW. 1976. Prediction of phosphorus and chlorophyll levels in lakes. J Water Pollut Control Fed. 48:2176–2182.
  • Kendall M. 1938. A new measure of rank correlation. Biometrika 30(1-2):81–93. doi: 10.2307/2332226.
  • Khare YP, Paudel R, Wiederholt R, Abiy AZ, Van Lent T, Davis SE, Her Y. 2021. Watershed response to legacy phosphorus and best management practices in an impacted agricultural watershed in Florida, U.S.A. Land 10(9):977. doi: 10.3390/land10090977.
  • Kincaid TM, Olsen AR. 2019. Spsurvey: spatial survey design and analysis. R package version 3.3. Available from https://cran.r-project.org/web/packages/spsurvey/spsurvey.pdf.
  • Knowlton MF, Jones JR. 2006. Temporal variation and assessment of trophic state indicators in Missouri reservoirs: implication for lake monitoring and management. Lake Reserv Manage. 22(3):261–271. 140609353904. doi: 10.1080/07438.
  • Lathrop RC, Carpenter SR. 2014. Water quality implications from three decades of phosphorus loads and trophic dynamics in the Yahara chain of lakes. IW 4(1):1–14. doi: 10.5268/IW–4.1.680.
  • Lee GF, Jones-Lee A. 2009. Comments on Environmental Protection Agency 40 CFR Part 131 [EPA-HQ-OW-2009-0596; FRL-XXXX-X] [RIN 2040-AF11] Water Quality Standards for the State of Florida’s Lakes and Flowing Waters. El Macero (CA): G. Fred Lee & Associates. Available from http://www.gfredlee.com/Nutrient/Florida-Nutrient-Std.pdf
  • Lottig NR, Wagner T, Norton Henry E, Spence Cheruvelil K, Webster KE, Downing JA, Stow CA. 2014. Long-term citizen-collected data reveal geographical patterns and temporal trends in lake water clarity. PLOS One. 9(4):e95769. doi: 10.1371/journal.pone.0095769.
  • Meals DW, Spooner J, Dressing SA, Harcum JB. 2011. Statistical analysis for monotonic trends, Tech Notes 6, November 2011, Developed for U.S. Environmental Protection Agency by Tetra Tech, Inc., Fairfax, VA.
  • Merrell K. 2022. The Clean Water Act needs an “enhanced Clean Lakes Program”. LAKELINE Fall 2022. Madison (WI): North American Lake Management Society (NALMS).
  • Missimer TM, Thomas S, Rosen BH. 2020. Legacy phosphorus in Lake Okeechobee (Florida, USA) sediments: A review and new perspective. Water 13(1):39. doi: 10.3390/w13010039.
  • Motew M, Chen X, Booth EG, Carpenter SR, Pinkas SS, Zipper C, Loheide IIS, Donner SD, Tsuruta K, Vadas PA, et al. 2017. The influence of legacy P on lake water quality in a midwestern agricultural watershed. Ecosystems 20(8):1468–1482. published online March 2017. doi: 10.1007/s10021-017-0125-0.
  • Motew M, Chen X, Carpenter SR, Booth EG, Seifert J, Qiu J, Loheide SP, Turner MG, Zipper SC, Kucharik CJ. 2019. Comparing the effects of climate and land use on surface water quality using future watershed scenarios. Sci Total Environ. 693:133484. doi: 10.1016/j.scitotenv.2019.07.290.
  • [NRC] National Research Council. 2001. Assessing the TMDL approach to water quality management. Washington (DC): National Academy Press.
  • Odum HT. 1953. Dissolved phosphorus in Florida waters. Florida Geological Survey. Tallahassee, Florida.
  • Oliver SK, Collins SM, Soranno PA, Wagner T, Stanley EH, Jones JR, Stow CA, Lottig NR. 2017. Unexpected stasis in a changing world: lake nutrient and chlorophyll trends since 1990. Glob Chang Biol. 23(12):5455–5467. doi: 10.1111/gcb.13810.
  • Omernik JM. 1987. Ecoregions of the conterminous United States. Annals Assoc Amer Geographers. 77(1):118–125. doi: 10.1111/j.1467-8306.1987.tb00149.x.
  • Osgood RA. 2017. Inadequacy of best management practices for restoring eutrophic lakes in the United States: guidance for policy and practice. Inland Waters. 7(4):401–407. doi: 10.1080/20442041.2017.1368881.
  • Parker GP, Ferguson GE, Love SE, and, others. 1955. Water resources of Southeastern Florida with special reference to the geology and ground water of the Miami Area. Washington (DC): United States Government Printing Office.
  • Prairie Y. 1996. Evaluating the predictive power of regression models. Can J Fish Aquat Sci. 53(3):490–492. doi: 10.1139/cjfas-53-3-490.
  • Quinton JN, Govers G, Van Oost K, Bardgett RD. 2010. The impact of agricultural soil erosion on biogeochemical cycling. Nature Geosci. 3(5):311–314. doi: 10.1038/ngeo838.
  • Rabalais NN, Turner RE, Wiseman WJ. 2002. Gulf of Mexico hypoxia, A.K.A. “The Dead Zone. Annu Rev Ecol Syst. 33(1):235–263. doi: 10.1146/annurev.ecolsys.33.010802.150513.
  • Reckhow KH. 2003. On the need for uncertainty assessment in TMDL modeling and implementation. J Water Resour Plann Manage. 129(4):245–246. doi: 10.1061/(ASCE)0733-9496(2003)129:4(245).
  • Reddy KR, Newman S, Osborne TZ, White JR, Fitz HC. 2011. Phosphorous cycling in the greater Everglades ecosystem: legacy phosphorous implications for management and restoration. Crit Rev Environ Sci Technol. 41(sup1):149–186. doi: 10.1080/10643389.2010.530932.
  • Reid N, Carroll MC, Ye X. 2013. The great recession of 2007-2009. Econ Develop Quart. 27(2):87–89. doi: 10.1177/089124241348563.
  • SAS Institute. 2000. JMP statistics and graphics guide. Cary (NC): SAS Institute, Inc.
  • Scheffer M, Hosper SH, Meijer ML, Moss B, Jeppesen E. 1993. Alternative equilibria in shallow lakes. Trends Ecol Evol. 8(8):275–279. doi: 10.1016/0169-5347(93)90254-M.
  • Schindler DW. 1977. Evolution of phosphorus limitation in lakes. Science 195(4275):260–262. doi: 10.1126/science.195.4275.260.
  • Schindler DW, Carpenter SR, Chapra SC, Hecky RE, Orihel DM. 2016. Reducing phosphorus to curb lake eutrophication is a success. Environ Sci Technol. 50(17):8923–8929. doi: 10.1021/acs.est.6b02204.
  • Snedecor GW, Cochran WG. 1980. Statistical methods. 7th ed. Ames (IA): The Iowa State University Press.
  • Søndergaard M, Jensen JP, Jeppesen E. 2003. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiol. 506-509(1-3):135–145. doi: 10.1023/B:HYDR.0000008611.12704.dd.
  • Stich HB, Brinker A. 2005. Less is better: uncorrected versus phaeopigment-corrected photometric chlorophyll-a estimation. archiv_hydrobiol. 162(1):111–120. doi: 10.1127/0003-9136/2005/0162-0111.
  • Topp SN, Tamlin M, Pavelsky TM, Stanley EH, Yang X, Griffin CG, Ross MRV. 2021. Multi-decadal improvement in US lake water clarity. Environ Res Lett. 16(5):055025. doi: 10.1088/1748-9326/abf002.
  • [USEPA] United States Environmental Protection Agency. 1980. Restoration of lakes and Inland waters. Int. Symp. on Inland Waters and Lake Restoration. September 8-12, 1980. Portland, Maine. EPA 440/5-81-010. Office of Water Regulations and Standards. Washington D.C.
  • [USEPA] United States Environmental Protection Agency. 1997. Lake regions of Florida. EPA/R-97/127. Corvallis (OR): National Health and Environmental Effects Research Laboratory.
  • [USEPA] United States Environmental Protection Agency 2000. Total maximum daily load (TMDL) development for Lake Okeechobee, Florida. Atlanta (GA): United States Environmental Protection Agency, Region IV.
  • [USEPA] United States Environmental Protection Agency. 2003. Elements of a state water monitoring and assessment program, EPA 841/B-03/003. Washington (DC): The University of Chicago Press.
  • [USEPA] United States Environmental Protection Agency. 2008. Handbook for developing watershed plans to restore and protect our waters, EPA 841-B-08-002. Washington (DC): Office of Water, Nonpoint Source Control Branch.
  • [USEPA] United States Environmental Protection Agency. 2010a. Water quality standards for the state of Florida’s lakes and flowing waters. Fed Regist. 75(131):4173–4226.’
  • [USEPA] United States Environmental Protection Agency 2010b. Technical support document for the U. S. EPA’s final rule for numeric criteria for nitrogen/phosphorus pollution in Florida’s inland surface fresh waters; [cited 6 Mar 2011]. Available from http://water.epa.gov/lawsregs/rulesregs/upload/floridatsd1.pdf
  • [USEPA] United States Environmental Protection Agency 2013. A long-term vision for assessment, restoration, and protection under the Clean Water Act Section 303(d) program. Available from https://www.epa.gov/sites/default/files/2015-07/documents/vision_303d_program_dec_2013.pdf
  • [USEPA] United States Environmental Protection Agency). 2017. National water quality inventory: Report to Congress. EPA 841-R-16-011. Washington, DC.
  • [USEPA] United States Environmental Protection Agency. 2022a. Historic 319 funding levels. Available from https://www.epa.gov/nps/319-grant-program-states-and-territories
  • [USEPA] United States Environmental Protection Agency. 2022b. 2022-2032 vision for the Clean Water Act Section 303(d) program. Available from https://www.epa.gov/system/files/documents/2022-09/CWA%20Section%20303d%20Vision_September%202022.pdf
  • Vollenweider RA. 1976. Advances in defining critical loading levels for phosphorus in lake eutrophication. Memorie Dell Instituto Italiano D’Idrobiologia 33:53–83.
  • Wagner KJ. 2018. Understanding the roles of watershed and in-lake techniques. LakeLine 38:6–8.
  • Welch EB, Bouchard D, Frodge J, Jacoby JM. 2019. Stability of Lake Sammamish phosphorus despite land use changes. Lake Reserv Manage. 35(2):167–180. doi: 10.1080/10402381.2019.1606868.
  • Williams VP. 2001. Effects of point-source removal on lake water quality: a case history of Lake Tohopekaliga, Florida. Lake Reserv Manage. 17(4):315–329. doi: 10.1080/07438140109354138.
  • Xiong C, Hoyer MV. 2019. Influence of land use and rainfall variability on nutrient concentrations in Florida lakes. Lake Reserv Manage. 35(1):25–37. doi: 10.1080/10402381.2018.1511659.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.