169
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Role of edaphic, hydrologic, and land cover variables in determining dissolved organic carbon in Missouri (USA) reservoirs and streams

, , , , , , & show all

References

  • [APHA] American Public Health Assocation. 1985. Standard methods for the examination of water and wastewater. 16th ed. Washington (DC): American Public Health Association.
  • Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ. 2009. The boundless carbon cycle. Nature Geosci. 2(9):598–600. doi: 10.1038/ngeo618.
  • Bhattacharya R, Jones JR, Graham JL, Obrecht DV, Thorpe AP, Harlan JD, North RL. 2022. Non-linear multi-decadal trends in organic matter dynamics in Midwest reservoirs are a function of variable hydro-climate. Limnol Oceanogr. 67(11):2531–2546. doi: 10.1002/lno.12220.
  • Canham CD, Pace ML, Papaik MJ, Primack AG, Roy KM, Maranger RJ, Curran RP, Spada DM. 2004. A spatially explicit watershed-scale analysis of dissolved organic carbon in Adirondack lakes. Ecol Appl. 14(3):839–854. doi: 10.1890/02-5271.
  • Carignan R, D’Arcy P, Lamontagne S. 2000. Comparative impacts of fire and forest harvesting on water quality in Boreal Shield lakes. Can J Fish Aquat Sci.57(S2):105–117. 10.1139/f00-125.
  • Cooke GD, Welch EB, Jones JR. 2011. Eutrophication of Tenkiller Reservoir, Oklahoma from non-point agricultural runoff. Lake Reserv Manage. 27(3):256–270. doi: 10.1080/07438141.2011.607552.
  • Couture S, Houle D, Gagnon C. 2012. Increases of dissolved organic carbon in temperate and boreal lakes in Quebec, Canada. Environ Sci Pollut Res Int. 19(2):361–371. doi: 10.1007/s11356-011-0565-6.
  • Dalzell BJ, Filley TR, Harbor JM. 2007. The role of hydrology in annual organic carbon load and terrestrial organic matter export from a midwestern agricultural watershed. Geochim Cosmochim Acta. 71(6):1448–1462. doi: 10.1016/j.gca.2006.12.009.
  • D’Arcy P, Carignan R. 1997. Influence of catchment topography on water chemistry in southeastern Quebec Shield lakes. Can J Fish Aquat Sci. 54(10):2215–2227. doi: 10.1139/f97-129.
  • Downing JA. 2010. Emerging global role of small lakes and ponds: little things mean a lot. Limnética. 29(1):9–24. doi: 10.23818/limn.29.02.
  • Downing JA, Cole JJ, Middelburg JJ, Striegl RG, Duarte CM, Kortelainen P, Prairie YT, Laube KA. 2008. Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century. Global Biogeochem Cycles 22:GB1018.
  • [ESRI] Environmental Systems Research Institute. 1997. ARC/INFO version 7.1. Redlands (CA): Environmental Systems Research Institute.
  • Evans CD, Futter MN, Moldan F, Valinia S, Frogbrook Z, Kothawala DN. 2017. Variability in organic carbon reactivity across lake residence time and trophic gradients. Nat Geosci. 10(11):832–835. doi: 10.1038/ngeo3051.
  • Findlay S, Quinn JM, Hickey CW, Burrell G, Downes M. 2001. Effects of land use and riparian flowpath on delivery of dissolved organic carbon to streams. Limnol Oceanogr. 46(2):345–355. doi: 10.4319/lo.2001.46.2.0345.
  • Gergel SE, Turner MG, Kratz TK. 1999. Dissolved organic carbon as an indicator of the scale of watershed influence on lakes and rivers. Ecol Appl. 9(4):1377–1390. doi: 10.1890/1051-0761(1999)009[1377:DOCAAI]2.0.CO;2.
  • Gilbert PJ, Taylor S, Cooke DA, Deary ME, Jeffries MJ. 2021. Quantifying organic carbon storage in temperate pond sediments. J Environ Manage. 280:111698. doi: 10.1016/j.jenvman.2020.111698.
  • Graham JL, Stone ML, Rasmussen TJ, Poulton BC. 2010. Effects of wastewater effluent discharge and treatment facility upgrades on environmental and biological conditions of the upper Blue River, Johnson County, Kansas and Jackson County, Missouri, January 2003 through March 2009: U.S. Geological Survey Scientific Investigations Report 2010–5248, 85 p.
  • Hanson PC, Hamilton DP, Stanley EH, Preston N, Langman OC, Kara EL. 2011. Fate of allochthonous dissolved organic carbon in lakes: a quantitative approach. PLoS One. 6(7):e21884. doi: 10.1371/journal.pone.0021884.
  • Hosen JD, McDonough OT, Febria CM, Palmer MA. 2014. Dissolved organic matter quality and bioavailablitiy changes across an urbanization gradient in headwater streams. Environ Sci Technol. 15:7817–7824.
  • Houle D, Carignan R, Lachance M, DuPont J. 1995. Dissolved organic carbon and sulfur in southwestern Quebec lakes: relationships with catchment and lake properties. Limnol Oceanogr. 40(4):710–717. doi: 10.4319/lo.1995.40.4.0710.
  • Jones JR, Argerich A, Obrecht DV, Thorpe AP, North RL. 2020a. Missouri lakes and reservoirs long-term limnological dataset ver 1. Environ Data Initiat. doi: 10.6073/pasta/86d8d176e91410566b4de51df44c2624.
  • Jones JR, Kaiser MS. 1988. Limnological characteristics of Lake of the Ozarks, Missouri II: measurements following formation of a large reservoirs upstream. Verh Internat Verein Limnol 23:976–984.
  • Jones JR, Knowlton MF. 2005a. Chlorophyll response to nutrients and non-algal seston in Missouri reservoirs and oxbow lakes. Lake Reserv Manage. 21(3):361–371. doi: 10.1080/07438140509354441.
  • Jones JR, Knowlton MF. 2005b. Suspended solids in Missouri reservoirs in relation to catchment features and internal processes. Water Res. 39(15):3629–3635. doi: 10.1016/j.watres.2005.06.007.
  • Jones JR, Knowlton MF, Obrecht DV. 2008a. Role of land cover and hydrology in determining nutrients in mid-continent reservoirs: implications for nutrient criteria and management. Lake Reserv Manage. 24(1):1–9. doi: 10.1080/07438140809354045.
  • Jones JR, Knowlton MF, Obrecht DV, Cook EA. 2004. Importance of landscape variables and morphology on nutrients in Missouri reservoirs. Can J Fish Aquat Sci. 61(8):1503–1512. doi: 10.1139/f04-088.
  • Jones JR, Knowlton MF, Obrecht DV, Thorpe AP, Harlan JD. 2009. Role of contemporary and historic vegetation on nutrients in Missouri reservoirs: implications for developing nutrient criteria. Lake Reserv Manage. 25(1):111–118. doi: 10.1080/07438140902772079.
  • Jones JR, Obrecht DV, Graham JL, Balmer MB, Filstrup CT, Downing JA. 2016. Seasonal patterns in carbon dioxide in 15 mid-continent (USA) reservoirs. Inland Waters. 6(2):265–272. doi: 10.5268/IW-6.2.982.
  • Jones JR, Obrecht DV, Perkins BD, Knowlton MF, Thorpe AP, Watanabe S, Bacon RR. 2008b. Nutrients, seston, and transparency of Missouri reservoirs and oxbow lakes: an analysis of regional limnology. Lake Reserv Manage. 24(2):155–180. doi: 10.1080/07438140809354058.
  • Jones JR, Obrecht DV, Thorpe AP. 2022a. Limnological characteristics of Lake of the Ozarks (Missouri, USA): long-term assessment following formation of a reservoir series. Lake Reserv Manage. 38(4):288–303. doi: 10.1080/10402381.2022.2109534.
  • Jones JR, Pollard C, Obrecht DV. 2022b. Factors influencing phosphorus in midcontinent impoundments (USA) and challenges for detecting abatement. Inland Waters. 12(1):154–162. doi: 10.1080/20442041.2020.1816802.
  • Jones JR, Pope-Cole K, Obrecht DV, Harlan JD, Knoll LB, Downing JA. 2023. Carbon and nutrient sequestration in small impoundments: a regional study with global implications. Inland Waters. 13(3):374–387. doi: 10.1080/20442041.2023.2265799.
  • Jones JR, Thorpe AP, Obrecht DV. 2020b. Limnological characteristics of Missouri reservoirs: synthesis of a long-term assessment. Lake Reserv Manage. 36(4):412–422. doi: 10.1080/10402381.2020.1756997.
  • Kalev S, Duan S, Toor GS. 2021. Enriched dissolved organic carbon export from a residential stormwater pond. Sci Total Environ. 75:141773. doi: 10.1016/j.scitotenv.2020.141773.
  • Kalev S, Toor GS. 2020. Concentrations and loads of dissolved and particulate organic carbon in urban stormwater runoff. Water. 12(4):1031. doi: 10.3390/w12041031.
  • Kellner E, Hubbart JA. 2017. Advancing understanding of the surface water quality regime of contemporary mixed-land-use watersheds: an application of the experimental watershed method. Hydrology 4(2):31. doi: 10.3390/hydrology4020031.
  • Knowlton MF, Jones JR. 2006a. Natural variability in lakes and reservoirs should be recognized in setting nutrient criteria. Lake Reserv Manage. 22(2):161–166. doi: 10.1080/07438140609353893.
  • Knowlton MF, Jones JR. 2006b. Temporal variation and assessment of trophic state indicators in Missouri reservoirs: implication for lake monitoring and management. Lake Reserv Manage. 22(3):261–271. doi: 10.1080/07438140609353904.
  • Kortelainen P, Mattsson T, Finér L, Ahtiainen M, Saukkonen S, Sallantaus T. 2006. Controls on the export of C, N, P and Fe from undisturbed boreal catchments, Finland. Aquat Sci. 68(4):453–468. doi: 10.1007/s00027-006-0833-6.
  • Lapierre JF, Seekell D, del Giorgio PA. 2015. Climate and landscape influence on indicators of lake carbon cycling through spatial patterns in dissolved organic carbon. Glob Change Biol. 21(12):4425–4435. doi: 10.1111/gcb.13031.
  • Lohman K, Jones JR. 1999. Nutrient-sestonic chlorophyll relationships in northern Ozark streams. Can J Fish Aquat Sci. 56:124–130.
  • Maranger R, Jones SE, Cotner JB. 2018. Stoichiometry of carbon, nitrogen, and phosphorus through the freshwater pile. Limnol Oceanogr Lett. 3(3):89–101. doi: 10.1002/lol2.10080.
  • Mendonça R, Müller RA, Clow D, Verpoorter C, Raymond P, Tranvik LJ, Sobek S. 2017. Organic carbon burial in global lakes and reservoirs. Nat Commun. 8(1):1694. doi: 10.1038/s41467-017-01789-6.
  • Meybeck M. 1982. Carbon, nitrogen and phosphorus transport by world rivers. Am J Sci. 282(4):401–450. doi: 10.2475/ajs.282.4.401.
  • Missouri Department of Natural Resources. 1987. Missouri water atlas. Jefferson City (MO). 97 p.
  • Missouri Spatial Data Information Service. 2011. The Missouri map; [accessed 2021 Mar 7]. https://msdis.maps.arcgis.com/apps/View/index.html?appid=5490021931814fd9a64ba6f1468fa9f0&extent=-101.2474,34.3685,-82.7904,42.2591.
  • Monteith DT, Stoddard JL, Evans CD, de Wit HA, Forsius M, Høgåsen T, Wilander A, Skjelkvåle BL, Jeffries DS, Vuorenmaa J, et al. 2007. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature. 450(7169):537–540. doi: 10.1038/nature06316.
  • Mulholland PJ. 2003. Large-scale patterns in dissolved organic carbon concentration, flux and sources. In: Findlay SEG and Sinsabaugh RL, editors. Aquatic ecosystems. Cambridge (MA): Academic Press. p. 139–159.
  • Nigh TA, Schroeder WA. 2002. Atlas of Missouri ecoregions. Missouri Department of Conservation. 212 p.
  • Pace ML, Cole JJ. 2002. Synchronous variation of dissolved organic carbon and color in lakes. Limnol Oceanogr. 47(2):333–342. doi: 10.4319/lo.2002.47.2.0333.
  • Pacheco FS, Roland F, Downing JA. 2014. Eutrophication reverses whole-lake carbon budgets. Inland Waters. 4(1):41–48. doi: 10.5268/IW-4.1.614.
  • Parris JT. 2000. Temporal variability in the physical, chemical and biological parameters of Hinkson Creek in response to changes in discharge [MS thesis]. Columbia (MO): University of Missouri. 173 p.
  • Perkins BD, Jones JR. 2000. Limnological characteristics of Lake of the Ozarks, Missouri III: seasonal patterns in nutrients, chlorophyll and algal bioassays. Verh Internat Verein Limnol. 27:2218–2224.
  • Perkins BD, Lohman K, Van Nieuwenhuyse E, Jones JR. 1998. An examination of land cover and stream water quality among physiographic provinces of Missouri USA. Verh Internat Verein Limnol. 26:940–947.
  • Pittman B, Jones JR, Millspaugh J, Kremer RJ, Downing JA. 2013. Sediment organic carbon distribution in 4 small northern Missouri impoundments: implications for sampling and carbon sequestration. Inland Waters. 3(1):39–46. doi: 10.5268/IW-3.1.507.
  • Pollard C. 2008. Influence of streambed substrate type and watershed properties on seston algal abundance [MS thesis]. Columbia (MO): University of Missouri. 193 p.
  • Rae R, Howard-Williams C, Hawes I, Schwarz A-M, Vincent WF. 2001. Penetration of solar ultraviolet radiation into New Zealand lakes: influence of dissolved organic carbon and catchment vegetation. Limnology. 2(2):79–89. doi: 10.1007/s102010170003.
  • Rasmussen JB, Godbout L, Schallenberg M. 1989. The humic content of lake water and its relationship to watershed and lake morphometry. Limnol Oceanogr. 34(7):1336–1343. doi: 10.4319/lo.1989.34.7.1336.
  • Saraceno JF, Pellerin BA, Downing BD, Boss E, Bachand PAM, Bergamaschi BA. 2009. High-frequency in situ optical measurements during a storm event: assessing relationships between dissolved organic matter, sediment concentrations, and hydrologic processes. J Geophys Res. 114:G00F09. doi: 10.1029/2009JG000989.
  • Seekell DA, Lapierre JF, Pace ML, Gudasz C, Sobek S, Tranvik L. 2014. Regional-scale variation of dissolved organic carbon concentrations in Swedish lakes. Limnol Oceanogr. 59(5):1612–1620. doi: 10.4319/lo.2014.59.5.1612.
  • Sobek S, Tranvik LJ, Prairie YT, Kortelainen P, Cole JJ. 2007. Patterns and regulation of dissolved organic carbon: an analysis of 7,500 widely distributed lakes. Limnol Oceanogr. 53:1208–1219.
  • Solomon CT, Jones SE, Weidel BC, Buffam I, Fork ML, Karlsson J, Larsen S, Lennon JT, Read JS, Sadro S, Saros JE. 2015. Ecosystem consequences of changing inputs of terrestrial dissolved organic matter to lakes: current knowledge and future challenges. Ecosystems. 18(3):376–389. doi: 10.1007/s10021-015-9848-y.
  • Spencer RGM, Pellerin BA, Bergamaschi BA, Downing BD, Kraus TEC, Smart DR, Dahlgren RA, Hernes PJ. 2007. Diurnal variability in riverine dissolved organic matter composition determined by in situ optical measurement in the San Joaquin River (California, USA). Hydrol Process. 21(23):3181–3189.
  • Stanley EH, Powers SM, Lottig NR, Buffam ISHI, Crawford JT. 2012. Contemporary changes in dissolved organic carbon (DOC) in human-dominated rivers: is there a role for DOC management? Freshw Biol. 57(s1):26–42. doi: 10.1111/j.1365-2427.2011.02613.x.
  • Tian YQ, Yu Q, Carrick HJ, Becker BL, Confesor R, Francek M, Anderson OC. 2022. Analysis of spatiotemporal variation in dissolved organic carbon concentrations for streams with cropland-dominated watersheds. Sci Tot Environ. 861:60744. doi: 10.1016/j.scitotenv.2022.160744.
  • Toming K, Kotta J, Uuemaa E, Sobek S, Kutser T, Tranvik L. 2020. Predicting lake dissolved organic carbon at a global scale. Sci Rep. 10(1):1–8. doi: 10.1038/s41598-020-65010-3.
  • Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P, Finlay K, Fortino K, Knoll LB, et al. 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr. 54(6part2):2298–2314. doi: 10.4319/lo.2009.54.6_part_2.2298.
  • [USACE] US Army Corps of Engineers. 2020. National inventory of dams. [acccessed 2021 Mar 7]. https://nid.sec.usace.army.mil/#/.
  • [USDA NRCS] US Department of Agriculture Natural Resources Conservation Service. 2023. Soil survey geographic database. [accessed 2021 Mar 7]. https://www.nrcs.usda.gov/resources/data-and-reports/soil-survey-geographic-database-ssurgo.
  • [USEPA] US Environmental Protection Agency. 2023. National aquatic resource surveys: data from the national aquatic resource surveys. [accessed 2022 Dec 17]. https://www.epa.gov/national-aquatic-resource-surveys/data-national-aquatic-resource-surveys.
  • US Geological Survey. 2016. National Water Information System data available on the World Wide Web (USGS Water Data for the Nation). [accessed 2023 Sep 10]. doi: 10.5066/F7P55KJN.
  • Veum KS, Goyne KW, Motavalli PP, Udawatta RP. 2009. Runoff and dissolved organic carbon loss from a paired-watershed study of three adjacent agricultural watersheds. Agric Ecosyst Environ. 130(3-4):115–122. doi: 10.1016/j.agee.2008.12.006.
  • Volk C, Wood L, Johnson B, Robinson J, Zhu HW, Kaplan L. 2002. Monitoring dissolved organic carbon in surface and drinking waters. J Environ Monitor. 4(1):43–47. doi: 10.1039/b107768f.
  • Watras CJ, Morrison KA, Crawford JT, McDonald CP, Oliver SK, Hanson PC. 2015. Diel cycles in the fluorescence of dissolved organic matter in dystrophic Wisconsin seepage lakes: Implications for carbon turnover. Limnol Oceanogr. 60(2):482–496. doi: 10.1002/lno.10026.
  • Welch EB, Cooke GD, Jones JR, Gendusa TC. 2011. DO-temperature habitat loss due to eutrophication in Tenkiller reservoir, Oklahoma, USA. Lake Reserv Manage. 27:271–285.
  • Williams CJ, Frost PC, Morales-Williams AM, Larson JH, Richardson WB, Chiandet AS, Xenopoulos MA. 2016. Human activities cause distinct dissolved organic matter composition across freshwater ecosystems. Glob Chang Biol. 22(2):613–626. doi: 10.1111/gcb.13094.
  • Willamson CE, Overholt EP, Pilla RM, Leach TH, Bentrup JA, Knoll LB, Mette EM, Moeller RE. 2015. Ecological consequences of long-term browning in lakes. Sci Rep. 5:1–10.
  • Xenopoulos MA, Barnes RT, Boodoo KS, Butman D, Catalán N, D’Amario SC, Fasching C, Kothawala DN, Pisani O, Solomon CT, et al. 2021. How humans alter dissolved organic matter composition in freshwater: relevance for the Earth’s biogeochemistry. Biogeochemistry. 154(2):323–348., doi: 10.1007/s10533-021-00753-3.
  • Xenopoulos MA, Lodge DM, Frentress J, Kreps TA, Bridgham SD, Grossman E, Jackson CJ. 2003. Regional comparisons of watershed determinants of dissolved organic carbon in temperate lakes from the Upper Great Lakes region and selected regions globally. Limnol Oceanogr. 48(6):2321–2334. doi: 10.4319/lo.2003.48.6.2321.
  • Zhou Y, Davidson TA, Yao X, Zhang Y, Jeppesen E, Garcia de Souza J, Wu H, Shi K, Qin B. 2018. How autochthonous dissolved organic matter responds to eutrophication and climate warming: evidence from a cross-continental data analysis and experiments. Earth Sci Rev. 185:928–937. doi: 10.1016/j.earscirev.2018.08.013.